Download Free A Retrofit Tool For Improving Energy Efficiency Of Commercial Buildings Book in PDF and EPUB Free Download. You can read online A Retrofit Tool For Improving Energy Efficiency Of Commercial Buildings and write the review.

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.
America's economy and lifestyles have been shaped by the low prices and availability of energy. In the last decade, however, the prices of oil, natural gas, and coal have increased dramatically, leaving consumers and the industrial and service sectors looking for ways to reduce energy use. To achieve greater energy efficiency, we need technology, more informed consumers and producers, and investments in more energy-efficient industrial processes, businesses, residences, and transportation. As part of the America's Energy Future project, Real Prospects for Energy Efficiency in the United States examines the potential for reducing energy demand through improving efficiency by using existing technologies, technologies developed but not yet utilized widely, and prospective technologies. The book evaluates technologies based on their estimated times to initial commercial deployment, and provides an analysis of costs, barriers, and research needs. This quantitative characterization of technologies will guide policy makers toward planning the future of energy use in America. This book will also have much to offer to industry leaders, investors, environmentalists, and others looking for a practical diagnosis of energy efficiency possibilities.
Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers presents current techniques and technologies for energy efficiency in buildings. Cases introduce and demonstrate applications in both the design of new buildings and retrofit of existing structures. The book begins with an introduction that includes energy consumption statistics, building energy efficiency codes, and standards and labels from around the world. It then highlights the need for integrated and comprehensive energy analysis approaches. Subsequent sections present an overview of advanced energy efficiency technologies for buildings, including dynamic insulation materials, phase change materials, LED lighting and daylight controls, Life Cycle Analysis, and more. This book provides researchers and professionals with a coherent set of tools and techniques for enhancing energy efficiency in new and existing buildings. The case studies presented help practitioners implement the techniques and technologies in their own projects. Introduces a holistic analysis approach to energy efficiency for buildings using the concept of energy productivity Provides coverage of individual buildings, communities and urban centers Includes both the design of new buildings and retrofitting of existing structures to improve energy efficiency Describes state-of-the-art energy efficiency technologies Presents several cases studies and examples that illustrate the analysis techniques and impact of energy efficiency technologies and controls
Despite recent improvements in energy efficiency being made in new build, it is important that the existing commercial building sector also take action to meet emission reduction targets. The objectives and challenges of such action will reduce the risk of the sector becoming obsolete due to high energy use and poor environmental performance. This book presents a theory-based, practice-support methodology to deal with sustainable retrofitting opportunities for existing commercial buildings in warm climates using bioclimatic design as the basis. The book has four main parts, focusing on eco-design and renovation, bioclimatic retrofitting, technological and behavioural change and case studies of retrofitting exemplars. In the first part, the context of climate change effects on design and renovation at the city scale is discussed. The second part looks at bioclimatic retrofitting as a 'design guide' for existing buildings, highlighting the significance of architectural design and engineering systems for energy performance. The technological and behavioural contexts of the existing building sector – policies, modelling, monitoring and trend analysis in respect to energy and environmental performance – are covered in part three. The final part gives some case studies showing the effectiveness of strategies suggested for effective environmental performance. This book is a must-have guide for all involved in the design and engineering of retrofitting projects in warm climates.
Convert residences and light-commercial buildings from energy-wasters to energy-efficiency. New remodelling codes require improvements in energy efficiency. Home and building owners want to reduce their energy costs. And now with Retrofitting for Energy Conservation, construction and design professionals can discover the most up-to-date plans, methods, tools, and materials for improving energy conservation in existing structures. Almost 85% of energy-conserving projects are retrofits, according to the National Association of Homebuilders. Retrofitting for Energy Conservation gives you the tools you need to meet this demand with step-by-step help in retrofitting any residence or light commercial building for energy savings. From assessing the challenge and offering the client options through initial project design and final execution of the building plan, this book gives you solutions that meet and exceed code requirements.
Energy-Efficient Retrofit of Buildings by Interior Insulation: Materials, Methods and Tools offers readers comprehensive coverage of current research in German Language Countries. Chapters provide an overview on the development of energy efficiency for building retrofits and the role of internal insulation, cover materials with chapters on Brick, Wood, Plaster, Clay, and Natural Stone, explain the impact of internal insulation in those materials and how to cope with problems such as moisture build, mold and algae growth, provide practical advice on how to apply internal insulation in the most effective way, including Salt Efflorescence, Noise Protection, Fire Prevention, and more. The practical approach of the book, with examples in all chapters, makes it valuable for Civil and Architectural Engineers involved with building retrofit. The book may also be useful to researchers in the field of Building Physics due to the breadth of the coverage. Introduces methods and tools through application examples Presents theory and simulations with practical information to validate models Explores a wide variety of materials and applications Features examples of Residential, Commercial and Historic Buildings Covers all stages of the retrofit process, from planning to inspection and how to avoid damage
This book provides detailed information on how to set up Deep Energy Retrofits (DERs) in public buildings, and shares in-depth insights into the current status of the major technologies, strategies and practical best practice examples of how to cost-effectively combine them. Case studies from Europe are analyzed with respect to energy use before and after renovation, reasons for undertaking the renovation, co-benefits achieved, resulting cost-effectiveness, and the business models employed. The building sector holds the potential for tremendous improvements in terms of energy efficiency and reducing carbon emissions, and energy retrofits to the existing building stock represent a significant opportunity in the transition to a low-carbon future. Moreover, investing in highly efficient building materials and systems can replace long-term energy imports, contribute to cost cutting, and create a wealth of new jobs. Yet, while the technologies needed in order to improve energy efficiency are readily available, significant progress has not yet been made, and “best practices” for implementing building technologies and renewable energy sources are still relegated to small “niche” applications. Offering essential information on Deep Energy Retrofits, the book offers a valuable asset for architects, public authorities, project developers, and engineers alike.
The Intuitive Guide to Energy Efficiency and Building Improvements Energy Audits and Improvements for Commercial Buildings provides a comprehensive guide to delivering deep and measurable energy savings and carbon emission reductions in buildings. Author Ian M. Shapiro has prepared, supervised, and reviewed over 1,000 energy audits in all types of commercial facilities, and led energy improvement projects for many more. In this book, he merges real-world experience with the latest standards and practices to help energy managers and energy auditors transform energy use in the buildings they serve, and indeed to transform their buildings. Set and reach energy reduction goals, carbon reduction goals, and sustainability goals Dramatically improve efficiency of heating, cooling, lighting, ventilation, water and other building systems Include the building envelope as a major factor in energy use and improvements Use the latest tools for more thorough analysis and reporting, while avoiding common mistakes Get up to date on current improvements and best practices, including management of energy improvements, from single buildings to large building portfolios, as well as government and utility programs Photographs and drawings throughout illustrate essential procedures and improvement opportunities. For any professional interested in efficient commercial buildings large and small, Energy Audits and Improvements for Commercial Buildings provides an accessible, complete, improvement-focused reference.
Fundamentals of Building Energy Dynamics assesses how and why buildings use energy, and how energy use and peak demand can be reduced. It provides a basis for integrating energy efficiency and solar approaches in ways that will allow building owners and designers to balance the need to minimize initial costs, operating costs, and life-cycle costs with need to maintain reliable building operations and enhance environmental quality both inside and outside the building. Chapters trace the development of building energy systems and analyze the demand side of solar applications as a means for determining what portion of a building's energy requirements can potentially be met by solar energy. Following the introduction, the book provides an overview of energy usepatterns in the aggregate U.S. building population. Chapter 3 surveys work onthe energy flows in an individual building and shows how these flows interact to influence overall energy use. Chapter 4 presents the analytical methods, techniques, and tools developed to calculate and analyze energy use in buildings, while chapter 5 provides an extensive survey of the energy conservation and management strategies developed in the post-energy crisis period. The approach taken is a commonsensical one, starting with the proposition that the purpose of buildings is to house human activities, and that conservation measures that negatively affect such activities are based on false economies. The goal is to determine rational strategies for the design of new buildings, and the retrofit of existing buildings to bring them up to modern standards of energy use. The energy flows examined are both large scale (heating systems) and small scale (choices among appliances). Solar Heat Technologies: Fundamentals and Applications, Volume 4
Retrofitting expresses, in a traditional approach, the process of improving something after it has been manufactured, constructed, or assembled. These systems integrate new technologies, new functions, and new services that increase the energy performance in existing private, public, and commercial buildings. Retrofitting for Optimal Energy Performance is a comprehensive reference source that examines environmentally conscious technologies and their applications in advancing retrofitting practices. Providing relevant theoretical frameworks and the latest empirical research findings in the area, it highlights an array of topics such as climate change, energy management, and optimization modeling, and is essential for academicians, students, researchers, engineers, architects, entrepreneurs, managers, policymakers, and building owners.