Download Free A Reconfigurable Supercomputer Architecture Book in PDF and EPUB Free Download. You can read online A Reconfigurable Supercomputer Architecture and write the review.

This book covers technologies, applications, tools, languages, procedures, advantages, and disadvantages of reconfigurable supercomputing using Field Programmable Gate Arrays (FPGAs). The target audience is the community of users of High Performance Computers (HPC) who may benefit from porting their applications into a reconfigurable environment. As such, this book is intended to guide the HPC user through the many algorithmic considerations, hardware alternatives, usability issues, programming languages, and design tools that need to be understood before embarking on the creation of reconfigurable parallel codes. We hope to show that FPGA acceleration, based on the exploitation of the data parallelism, pipelining and concurrency remains promising in view of the diminishing improvements in traditional processor and system design. Table of Contents: FPGA Technology / Reconfigurable Supercomputing / Algorithmic Considerations / FPGA Programming Languages / Case Study: Sorting / Alternative Technologies and Concluding Remarks
This work is a comprehensive study of the field. It provides an entry point to the novice willing to move in the research field reconfigurable computing, FPGA and system on programmable chip design. The book can also be used as teaching reference for a graduate course in computer engineering, or as reference to advance electrical and computer engineers. It provides a very strong theoretical and practical background to the field, from the early Estrin’s machine to the very modern architecture such as embedded logic devices.
Reconfigurable Computing Systems Engineering: Virtualization of Computing Architecture describes the organization of reconfigurable computing system (RCS) architecture and discusses the pros and cons of different RCS architecture implementations. Providing a solid understanding of RCS technology and where it’s most effective, this book: Details the architecture organization of RCS platforms for application-specific workloads Covers the process of the architectural synthesis of hardware components for system-on-chip (SoC) for the RCS Explores the virtualization of RCS architecture from the system and on-chip levels Presents methodologies for RCS architecture run-time integration according to mode of operation and rapid adaptation to changes of multi-parametric constraints Includes illustrative examples, case studies, homework problems, and references to important literature A solutions manual is available with qualifying course adoption. Reconfigurable Computing Systems Engineering: Virtualization of Computing Architecture offers a complete road map to the synthesis of RCS architecture, exposing hardware design engineers, system architects, and students specializing in designing FPGA-based embedded systems to novel concepts in RCS architecture organization and virtualization.
This work is a comprehensive study of the field. It provides an entry point to the novice willing to move in the research field reconfigurable computing, FPGA and system on programmable chip design. The book can also be used as teaching reference for a graduate course in computer engineering, or as reference to advance electrical and computer engineers. It provides a very strong theoretical and practical background to the field, from the early Estrin’s machine to the very modern architecture such as embedded logic devices.
Dynamic Reconfigurable Architectures and Transparent Optimization Techniques presents a detailed study on new techniques to cope with the aforementioned limitations. First, characteristics of reconfigurable systems are discussed in details, and a large number of case studies is shown. Then, a detailed analysis of several benchmarks demonstrates that such architectures need to attack a diverse range of applications with very different behaviours, besides supporting code compatibility. This requires the use of dynamic optimization techniques, such as Binary Translation and Trace reuse. Finally, works that combine both reconfigurable systems and dynamic techniques are discussed and a quantitative analysis of one them, the DIM architecture, is presented.
This book constitutes the proceedings of the 17th International Symposium on Applied Reconfigurable Computing, ARC 2021, held as a virtual event, in June 2021. The 14 full papers and 11 short presentations presented in this volume were carefully reviewed and selected from 40 submissions. The papers cover a broad spectrum of applications of reconfigurable computing, from driving assistance, data and graph processing acceleration, computer security to the societal relevant topic of supporting early diagnosis of Covid infectious conditions.
This book constitutes the refereed proceedings of the Third International Workshop on Applied Reconfigurable Computing, ARC 2007, held in Mangaratiba, Brazil, in March 2007. The 27 full papers and 10 short papers presented together with a late-comer contribution from ARC 2006 are organized in topical sections on architectures, mapping techniques and tools, arithmetic, and applications.
Dynamic Reconfiguration: Architectures and Algorithms offers a comprehensive treatment of dynamically reconfigurable computer architectures and algorithms for them. The coverage is broad starting from fundamental algorithmic techniques, ranging across algorithms for a wide array of problems and applications, to simulations between models. The presentation employs a single reconfigurable model (the reconfigurable mesh) for most algorithms, to enable the reader to distill key ideas without the cumbersome details of a myriad of models. In addition to algorithms, the book discusses topics that provide a better understanding of dynamic reconfiguration such as scalability and computational power, and more recent advances such as optical models, run-time reconfiguration (on FPGA and related platforms), and implementing dynamic reconfiguration. The book, featuring many examples and a large set of exercises, is an excellent textbook or reference for a graduate course. It is also a useful reference to researchers and system developers in the area.
This book constitutes the thoroughly refereed post-proceedings of the Second International Workshop on Reconfigurable Computing, ARC 2006, held in Delft, The Netherlands, in March 2006. The 22 revised full papers and 35 revised short papers presented were thoroughly reviewed and selected from 95 submissions. The papers are organized in topical sections on applications, power, image processing, organization and architecture, networks and communication, security, and tools.