Download Free A Real Time Space Station Dynamics And Control System Simulation Book in PDF and EPUB Free Download. You can read online A Real Time Space Station Dynamics And Control System Simulation and write the review.

A real-time computer-hardware simulation for the investigation of space station dynamics and control problems is described. The simulation utilizes full-scale control moment gyro (CMG) hardware mounted on a moving base simulator, a manual console, and a Control Data (CDC) 6600 digital computer to represent a space station and its control system. The digital computer software is programed in modular form by using separate subroutines or modules to represent the simulated spacecraft, onboard control computer, isolated experiment packages, and other disturbance or dynamics functions associated with space station operation. A complete functional and operational description of the major elements of the space station simulation is included.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application Simulated results and their graphical plots are developed through MATLAB/Simulink code
A textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers. Cooper, Paul A. and Garrison, James L., Jr. and Montgomery, Raymond C. and Wu, Shih-Chin and Stockwell, Alan E. and Demeo, Martha E. Langley Research Center ATTITUDE CONTROL; DYNAMIC STRUCTURAL ANALYSIS; REMOTE MANIPULATOR SYSTEM; SPACE SHUTTLE ORBITERS; SPACE STATION FREEDOM; SPACECRAFT CONTROL; SPACECRAFT DOCKING; COMPUTERIZED SIMULATION; DYNAMIC RESPONSE; ORBITAL MECHANICS; SPACECRAFT MANEUVERS...
Satellite development worldwide has significantly changed within the last decade and has been accelerated and optimized by modern simulation tools. The classic method of developing and testing several models of a satellite and its subsystems with the aim to build a pre-flight and finally a flight model is being replaced more and more by a considerably faster and more inexpensive method. The new approach no longer includes functional test models on entire spacecraft level but a system simulation. Thus overall project runtimes can be shortened. But also significantly more complex systems can be managed and success oriented tests on integration and software level can be realized before the launch. Applying modern simulation infrastructures already during spacecraft development phase, enables the consistent functionality checking of all systems both in detail and concerning their interaction. Furthermore, they enable checks of the system's proper functionality, their reliability and safety / redundancy. But also analysis regarding aging and lifetime issues can be performed by simulation. Project-related simulations of operational scenarios, for example with remote sensing satellites, and the checking of different operational modes are of similar importance. On the whole, risk is reduced significantly and the satellite can be produced in a considerably more cost efficient way, with higher quality and in shorter periods of time. Therefore "Simulating Spacecraft Systems" - the title of the present book - is an important domain of modern system engineering, which meanwhile has successfully established a position in many other sectors of industry and research, too.