Download Free A Rapid Introduction To Adaptive Filtering Book in PDF and EPUB Free Download. You can read online A Rapid Introduction To Adaptive Filtering and write the review.

In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.
Adaptive filtering is a topic of immense practical and theoretical value, having applications in areas ranging from digital and wireless communications to biomedical systems. This book enables readers to gain a gradual and solid introduction to the subject, its applications to a variety of topical problems, existing limitations, and extensions of current theories. The book consists of eleven parts?each part containing a series of focused lectures and ending with bibliographic comments, problems, and computer projects with MATLAB solutions.
Online learning from a signal processing perspective There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters. Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm Presents a powerful model-selection method called maximum marginal likelihood Addresses the principal bottleneck of kernel adaptive filters—their growing structure Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site Concludes each chapter with a summary of the state of the art and potential future directions for original research Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
Subband adaptive filtering is rapidly becoming one of the most effective techniques for reducing computational complexity and improving the convergence rate of algorithms in adaptive signal processing applications. This book provides an introductory, yet extensive guide on the theory of various subband adaptive filtering techniques. For beginners, the authors discuss the basic principles that underlie the design and implementation of subband adaptive filters. For advanced readers, a comprehensive coverage of recent developments, such as multiband tap–weight adaptation, delayless architectures, and filter–bank design methods for reducing band–edge effects are included. Several analysis techniques and complexity evaluation are also introduced in this book to provide better understanding of subband adaptive filtering. This book bridges the gaps between the mixed–domain natures of subband adaptive filtering techniques and provides enough depth to the material augmented by many MATLAB® functions and examples. Key Features: Acts as a timely introduction for researchers, graduate students and engineers who want to design and deploy subband adaptive filters in their research and applications. Bridges the gaps between two distinct domains: adaptive filter theory and multirate signal processing. Uses a practical approach through MATLAB®-based source programs on the accompanying CD. Includes more than 100 M-files, allowing readers to modify the code for different algorithms and applications and to gain more insight into the theory and concepts of subband adaptive filters. Subband Adaptive Filtering is aimed primarily at practicing engineers, as well as senior undergraduate and graduate students. It will also be of interest to researchers, technical managers, and computer scientists.
Adaptive Filtering: Algorithms and Practical Implementation, Second Edition, presents a concise overview of adaptive filtering, covering as many algorithms as possible in a unified form that avoids repetition and simplifies notation. It is suitable as a textbook for senior undergraduate or first-year graduate courses in adaptive signal processing and adaptive filters. The philosophy of the presentation is to expose the material with a solid theoretical foundation, to concentrate on algorithms that really work in a finite-precision implementation, and to provide easy access to working algorithms. Hence, practicing engineers and scientists will also find the book to be an excellent reference. This second edition contains a substantial amount of new material: -Two new chapters on nonlinear and subband adaptive filtering; -Linearly constrained Weiner filters and LMS algorithms; -LMS algorithm behavior in fast adaptation; -Affine projection algorithms; -Derivation smoothing; -MATLAB codes for algorithms.
This second edition of Adaptive Filters: Theory and Applications has been updated throughout to reflect the latest developments in this field; notably an increased coverage given to the practical applications of the theory to illustrate the much broader range of adaptive filters applications developed in recent years. The book offers an easy to understand approach to the theory and application of adaptive filters by clearly illustrating how the theory explained in the early chapters of the book is modified for the various applications discussed in detail in later chapters. This integrated approach makes the book a valuable resource for graduate students; and the inclusion of more advanced applications including antenna arrays and wireless communications makes it a suitable technical reference for engineers, practitioners and researchers. Key features: • Offers a thorough treatment of the theory of adaptive signal processing; incorporating new material on transform domain, frequency domain, subband adaptive filters, acoustic echo cancellation and active noise control. • Provides an in-depth study of applications which now includes extensive coverage of OFDM, MIMO and smart antennas. • Contains exercises and computer simulation problems at the end of each chapter. • Includes a new companion website hosting MATLAB® simulation programs which complement the theoretical analyses, enabling the reader to gain an in-depth understanding of the behaviours and properties of the various adaptive algorithms.
Adaptive filtering is a branch of digital signal processing which enables the selective enhancement of desired elements of a signal and the reduction of undesired elements. Change detection is another kind of adaptive filtering for non-stationary signals, and is the basic tool in fault detection and diagnosis. This text takes the unique approach that change detection is a natural extension of adaptive filtering, and the broad coverage encompasses both the mathematical tools needed for adaptive filtering and change detection and the applications of the technology. Real engineering applications covered include aircraft, automotive, communication systems, signal processing and automatic control problems. The unique integration of both theory and practical applications makes this book a valuable resource combining information otherwise only available in separate sources Comprehensive coverage includes many examples and case studies to illustrate the ideas and show what can be achieved Uniquely integrates applications to airborne, automotive and communications systems with the essential mathematical tools Accompanying Matlab toolbox available on the web illustrating the main ideas and enabling the reader to do simulations using all the figures and numerical examples featured This text would prove to be an essential reference for postgraduates and researchers studying digital signal processing as well as practising digital signal processing engineers.
This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.
Offers concise, practical knowledge on modern communication systems to help students transition smoothly into the workplace and beyond This book presents the most relevant concepts and technologies of today's communication systems and presents them in a concise and intuitive manner. It covers advanced topics such as Orthogonal Frequency-Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) Technology, which are enabling technologies for modern communication systems such as WiFi (including the latest enhancements) and LTE-Advanced. Following a brief introduction to the field, Digital Communication for Practicing Engineers immerses readers in the theories and technologies that engineers deal with. It starts off with Shannon Theorem and Information Theory, before moving on to basic modules of a communication system, including modulation, statistical detection, channel coding, synchronization, and equalization. The next part of the book discusses advanced topics such as OFDM and MIMO, and introduces several emerging technologies in the context of 5G cellular system radio interface. The book closes by outlining several current research areas in digital communications. In addition, this text: Breaks down the subject into self-contained lectures, which can be read individually or as a whole Focuses on the pros and cons of widely used techniques, while providing references for detailed mathematical analysis Follows the current technology trends, including advanced topics such as OFDM and MIMO Touches on content this is not usually contained in textbooks such as cyclo-stationary symbol timing recovery, adaptive self-interference canceler, and Tomlinson-Harashima precoder Includes many illustrations, homework problems, and examples Digital Communication for Practicing Engineers is an ideal guide for graduate students and professionals in digital communication looking to understand, work with, and adapt to the current and future technology.
This unified survey focuses on linear discrete-time systems and explores natural extensions to nonlinear systems. It emphasizes discrete-time systems, summarizing theoretical and practical aspects of a large class of adaptive algorithms. 1984 edition.