Download Free A Ramble Through Probability Book in PDF and EPUB Free Download. You can read online A Ramble Through Probability and write the review.

Measure theory and measure-theoretic probability are fascinating subjects. Proofs describing profound ways to reason lead to results that are frequently startling, beautiful, and useful. Measure theory and probability also play roles in the development of pure and applied mathematics, statistics, engineering, physics, and finance. Indeed, it is difficult to overstate their importance in the quantitative disciplines. This book traces an eclectic path through the fundamentals of the topic to make the material accessible to a broad range of students. A Ramble through Probability: How I Learned to Stop Worrying and Love Measure Theory brings together the key elements and applications in a unified presentation aimed at developing intuition; contains an extensive collection of examples that illustrate, explain, and apply the theories; and is supplemented with videos containing commentary and explanations of select proofs on an ancillary website. This book is intended for graduate students in engineering, mathematics, science, and statistics. Researchers who need to use probability theory will also find it useful. It is appropriate for graduate-level courses on measure theory and/or probability theory.
Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
The volumes in this set, originally published between 1970 and 1996, draw together research by leading academics in the area of economic and financial markets, and provide a rigorous examination of related key issues. The volumes examine the stock exchange, capital cities as financial centres, international capital, the financial system, bond duration, security market indices and artificial intelligence applications on Wall Street, whilst also exploring the general principles and practices of financial markets in various countries. This set will be of particular interest to students of economics and finance respectively.
First published in 1982, Bond Duration and Immunization is a collection of seminal papers featuring articles from high profile academics such as Frederick McCaulay, John Hicks, and F.M. Redington. This collection also features several articles published in British actuarial journals often unavailable outside of the UK, and a strong collection of articles which contextually offer a significant contribution to the field. This strong collection will appeal to anyone working or researching in the area of bond duration and immunization.