Download Free A Quick Introduction To Complex Analysis Book in PDF and EPUB Free Download. You can read online A Quick Introduction To Complex Analysis and write the review.

This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
The aim of the book is to give a smooth analytic continuation from calculus to complex analysis by way of plenty of practical examples and worked-out exercises. The scope ranges from applications in calculus to complex analysis in two different levels.If the reader is in a hurry, he can browse the quickest introduction to complex analysis at the beginning of Chapter 1, which explains the very basics of the theory in an extremely user-friendly way. Those who want to do self-study on complex analysis can concentrate on Chapter 1 in which the two mainstreams of the theory — the power series method due to Weierstrass and the integration method due to Cauchy — are presented in a very concrete way with rich examples. Readers who want to learn more about applied calculus can refer to Chapter 2, where numerous practical applications are provided. They will master the art of problem solving by following the step by step guidance given in the worked-out examples.This book helps the reader to acquire fundamental skills of understanding complex analysis and its applications. It also gives a smooth introduction to Fourier analysis as well as a quick prelude to thermodynamics and fluid mechanics, information theory, and control theory. One of the main features of the book is that it presents different approaches to the same topic that aids the reader to gain a deeper understanding of the subject.
Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.
This book gives a comprehensive introduction to complex analysis in several variables. While it focusses on a number of topics in complex analysis rather than trying to cover as much material as possible, references to other parts of mathematics such as functional analysis or algebras are made to help broaden the view and the understanding of the chosen topics. A major focus are extension phenomena alien to the one-dimensional theory, which are expressed in the famous Hartog's Kugelsatz, the theorem of Cartan-Thullen, and Bochner's theorem. The book aims primarily at students starting to work in the field of complex analysis in several variables and instructors preparing a course. To that end, a lot of examples and supporting exercises are provided throughout the text. This second edition includes hints and suggestions for the solution of the provided exercises, with various degrees of support.
Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.
This is a self-contained book that covers the standard topics in introductory analysis and that in addition constructs the natural, rational, real and complex numbers, and also handles complex-valued functions, sequences, and series.The book teaches how to write proofs. Fundamental proof-writing logic is covered in Chapter 1 and is repeated and enhanced in two appendices. Many examples of proofs appear with words in a different font for what should be going on in the proof writer's head.The book contains many examples and exercises to solidify the understanding. The material is presented rigorously with proofs and with many worked-out examples. Exercises are varied, many involve proofs, and some provide additional learning materials.
The book constitutes a basic, concise, yet rigorous first course in complex analysis, for undergraduate students who have studied multivariable calculus and linear algebra. The textbook should be particularly useful for students of joint programmes with mathematics, as well as engineering students seeking rigour. The aim of the book is to cover the bare bones of the subject with minimal prerequisites. The core content of the book is the three main pillars of complex analysis: the Cauchy-Riemann equations, the Cauchy Integral Theorem, and Taylor and Laurent series. Each section contains several problems, which are not drill exercises, but are meant to reinforce the fundamental concepts. Detailed solutions to all the 243 exercises appear at the end of the book, making the book ideal for self-study. There are many figures illustrating the text.The second edition corrects errors from the first edition, and includes 89 new exercises, some of which cover auxiliary topics that were omitted in the first edition. Two new appendices have been added, one containing a detailed rigorous proof of the Cauchy Integral Theorem, and another providing background in real analysis needed to make the book self-contained.
The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom mend to anyone to look through them. More recent texts have empha sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the instructor as well. A specific point of the book is the inclusion of the Laplace transform. These two topics are closely related. Concepts in complex analysis are needed to formulate and prove basic theorems in Laplace transforms, such as the inverse Laplace transform formula. Methods of complex analysis provide solutions for problems involving Laplace transforms. Complex numbers lend clarity and completion to some areas of classical analysis. These numbers found important applications not only in the mathematical theory, but in the mathematical descriptions of processes in physics and engineering.