Download Free A Process For Recovery Of Fresh Water From Sea Water Book in PDF and EPUB Free Download. You can read online A Process For Recovery Of Fresh Water From Sea Water and write the review.

This volume presents papers on the topics covered at the National Academy of Engineering's 2016 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2016 symposium was held September 19-21 at the Arnold and Mabel Beckman Center in Irvine, California. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.
A growing proportion of the world’s population is dependent on Seawater Desalination as a source of fresh water for both potable and civil use. One of the main drawbacks of conventional desalination technologies is the substantial energy requirement, which is facing cost increases in the global energy market. "Seawater Desalination" presents an overview of conventional and non-conventional technologies, with a particular focus on the coupling of renewable energies with desalination processes. The first section of this book presents, in a technical but reader-friendly way, an overview of currently-used desalination processes, from thermal to membrane processes, highlighting the relevant technical features, advantages and disadvantages, and development potential. It also gives a rapid insight into the economic aspects of fresh water production from seawater. The second section of the book presents novel processes which use Renewable Energies for fresh water production. From the first solar still evaporators, which artificially reproduced the natural cycle of water, technology has progressed to develop complex systems to harness energy from the sun, wind, tides, waves, etc. and then to use this energy to power conventional or novel desalination processes. Most of these processes are still at a preliminary stage of development, but some are already being cited as examples in remote areas, where they are proving to be valuable in solving the problems of water scarcity. A rapid growth in these technologies is foreseen in the coming years. This book provides a unique foundation, within the context of present and future sustainability, for professionals, technicians, managers, and private and public institutions operating in the area of fresh water supply.
The need for fresh water is increasing with the rapid growth of the world's population. In countries and regions with available water resources, it is necessary to ensure the health and safety of the water supply. However, in countries and regions with limited freshwater resources, priority is given to water supply plans and projects, among which the desalination strategy stands out. In the desalination process, membrane and thermal processes are used to obtain fresh water from salty water that is in abundant amounts in the sea. This book will outline valuable scientific contributions to the new desalination and water treatment technologies to obtain high quality water with low negative environmental impacts and cost. The editors would like to record their sincere thanks to the authors for their contributions.
Seawater reverse osmosis (SWRO) is the dominant desalination process worldwide for obtaining fresh water from the sea. The subject matter and scope of this book is the conceptual and advanced planning, design and engineering of plants of this desalination process together with the associated facilities for seawater pretreatment, post-treatment of the product water, wastewater treatment, seawater extraction and plant discharge. The book is intended to be used by technicians, engineers, economists and ecologists in the planning, design and operation of SWRO plants, as an educational and training tool, as well as an aid in environmental licensing of membrane desalination plants, and by interested laypersons for information about this process. The two volumes are also available as a set.
Fresh Water from Saline Waters: The Political, Social, Engineering and Economic Aspects of Desalination examines the political, social, engineering and economic aspects of desalination, with emphasis on the recovery of fresh water from saline waters. The feasibility of combining power generation and distillation is discussed. This book begins with an overview of the history and some basic concepts of desalination, a process that involves artificially taking away or removing the salt from salted water or from sea water. It then presents a brief overall perspective on water supply and its uses in the United States, along with an explanation of the technical principles of distillation with particular reference to evaporation, freezing, and electrodialysis. The desalination process known as multi-stage flash distillation is also considered, together with the principles of combining power generation and distillation and the thermodynamic basis of this integration. The book concludes with an analysis of the economics of nuclear power plants and nuclear heat for distillation. This monograph will be useful for undergraduate students, practitioners, and researchers in engineering, economics, politics, and social sciences.
High-energy consumption is a critical issue associated with seawater reverse osmosis (SWRO) desalination, although the SWRO has been regarded as one of the most energy-efficient processes for seawater desalination. This means that SWRO involves a larger amount of fossil fuel and other energy sources for water production, which imposes a negative impact on the environment such as greenhouse gas emission. Therefore, the high-energy consumption of SWRO should be addressed to minimize environmental impacts and to allow for sustainable exploitation of seawater. However, the recent trend of energy consumption in SWRO seems to have reached a saturation point, which is still higher than theoretical minimum energy. To find new and innovative strategies for lowering current energy consumption, a comprehensive understanding of energy use in SWRO plants from theoretical analysis to actual energy consumption in real SWRO plants is required. This book can provide readers with information about the current state of energy consumption in actual SWRO plants, the fundamental understanding of energy use of SWRO plants from theoretical point of view, and advanced technologies and processes that could be applied for future energy reduction. In addition, this book will offer a detailed methodology for analyzing energy issues in seawater desalination. Through this book, readers will obtain an insight into how to deal with and analyze the energy issues in SWRO desalination.
Fresh Water from the Sea is a collection of papers that discusses the advancement in the technologies and methodologies utilized in the process of desalting seawater. The emphasis of the book is not only on desalting but also on processing the seawater into potable water. The coverage of the text includes the advancement of desalting process in various countries, such as Japan, Israel, and Italy. The text also covers the aspects of the application of ion exchange to the conversion of saline water into fresh water and the evolution of the distillation process for seawater conversion. The text will be of great use to researchers and practitioners in disciplines that directly deal with securing a potable water source.
Seawater reverse osmosis (SWRO) is the dominant desalination process worldwide for obtaining fresh water from the sea. The subject matter and scope of this book is the conceptual and advanced planning, design and engineering of plants of this desalination process together with the associated facilities for seawater pretreatment, post-treatment of the product water, wastewater treatment, seawater extraction and plant discharge. The book is intended to be used by technicians, engineers, economists and ecologists in the planning, design and operation of SWRO plants, as an educational and training tool, as well as an aid in environmental licensing of membrane desalination plants, and by interested laypersons for information about this process. The two volumes are also available as a set.