Download Free A Primer Of Quantum Mechanics Book in PDF and EPUB Free Download. You can read online A Primer Of Quantum Mechanics and write the review.

Introductory text examines classical quantum bead on a track: state and representations; operator eigenvalues; harmonic oscillator and bound bead in a symmetric force field; bead in spherical shell. 1992 edition.
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
A leisurely but mathematically honest presentation of quantum mechanics for graduate students in mathematics with an interest in physics.
Explaining the concepts of quantum mechanics and quantum field theory in a precise mathematical language, this textbook is an ideal introduction for graduate students in mathematics, helping to prepare them for further studies in quantum physics. The textbook covers topics that are central to quantum physics: non-relativistic quantum mechanics, quantum statistical mechanics, relativistic quantum mechanics and quantum field theory. There is also background material on analysis, classical mechanics, relativity and probability. Each topic is explored through a statement of basic principles followed by simple examples. Around 100 problems throughout the textbook help readers develop their understanding.
The chemist's approach to the understanding of matter and its chemical transformations is to take a microscopic view, connecting experimental observation with the properties of the constituent molecules. Atoms and sub-atomic particles do not obey the classical laws of mechanics but conform rather to the laws of quantum mechanics. Quantum mechanics is thus of central importance in chemistry. In order to understand the behaviour of molecules and their constituent particles it is necessary to have a thorough grounding in the principles and applications of quantum mechanics. Quantum Mechanics 2: The Toolkit provides a toolkit for applying quantum mechanics to chemical problems, introducing more advanced approaches using approximate methods. It describes areas of chemistry where quantum mechanics is important, and shows how quantum mechanics can be applied to chemical problems.
For upper-level undergraduates and graduate students: an introduction to the fundamentals of quantum mechanics, emphasizing aspects essential to an understanding of solid-state theory. Numerous problems (and selected answers), projects, exercises.
Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.
This book, the first of a two-volume set, provides a comprehensive introduction to quantum mechanics for advanced undergraduate and postgraduate students entering the field of nuclear structure studies via two-state systems: both polarized photons and spin-1/2 particles. This leads to the logic behind the physical structure and an axiomatic formulation using linear spaces and operators. The one-dimensional harmonic oscillator is used to illustrate the mechanics of quantized systems, reaching to time dependence and coherent states. Measurement theory is introduced. The transformation theory of space and time leads to wave functions. The role of group theory and rotations then leads to the quantization of angular momentum. Central force problems are handled algebraically. The development is completed with quantization of motion of a charged particle in a magnetic field. Part of IOP Series in Nuclear Spectroscopy and Nuclear Structure.