Download Free A Primer Of Molecular Population Genetics Book in PDF and EPUB Free Download. You can read online A Primer Of Molecular Population Genetics and write the review.

What are the genomic signatures of adaptations in DNA? How often does natural selection dictate changes to DNA? How does the ebb and flow in the abundance of individuals over time get marked onto chromosomes to record genetic history? Molecular population genetics seeks to answer such questions by explaining genetic variation and molecular evolution from micro-evolutionary principles. It provides a way to learn about how evolution works and how it shapes species by incorporating molecular details of DNA as the heritable material. It enables us to understand the logic of how mutations originate, change in abundance in populations, and become fixed as DNA sequence divergence between species. With the revolutionary advances in genomic data acquisition, understanding molecular population genetics is now a fundamental requirement for today's life scientists. These concepts apply in analysis of personal genomics, genome-wide association studies, landscape and conservation genetics, forensics, molecular anthropology, and selection scans. This book introduces, in an accessible way, the bare essentials of the theory and practice of molecular population genetics.
Published by Sinauer Associates, an imprint of Oxford University Press. Provides descriptions of the methods and tools used in molecular population genetics, which has combined advances in molecular biology and genomics with mathematical and empirical findings to uncover the history of natural selection and demographic shifts in many organisms.
The use of molecular methods to study genetic polymorphisms has made a familiarity with population genetics essential for any biologist whose work is at the population level. A Primer of Population Genetics, Third Edition provides a concise but comprehensive introduction to population genetics. The four chapters of the book address genetic variation, the causes of evolution, molecular population genetics, and the genetic architecture of complex traits. Chapter-end problems reinforce ideas and, while there are some equations, the emphasis is on explanation rather than derivation.
This book covers basic concepts in population and quantitative genetics, including measuring selection on phenotypic traits. The emphasis is on material applicable to field studies of evolution focusing on ecologically important traits. Topics addressed are critical for training students in ecology, evolution, conservation biology, agriculture, forestry, and wildlife management. Many texts in this field are too complex and mathematical to allow the average beginning student to readily grasp the key concepts. A Primer of Ecological Genetics, in contrast, employs mathematics and statistics-fully explained, but at a less advanced level-as tools to improve understanding of biological principles. The main goal is to enable students to understand the concepts well enough that they can gain entry into the primary literature. Integration of the different chapters of the book shows students how diverse concepts relate to each other.
An invaluable student-tested study aid, this primer, first published in 2007, provides guided instruction for the analysis and interpretation of genetic principles and practice in problem solving. Each section is introduced with a summary of useful hints for problem solving and an overview of the topic with key terms. A series of problems, generally progressing from simple to more complex, then allows students to test their understanding of the material. Each question and answer is accompanied by detailed explanation. This third edition includes additional problems in basic areas that often challenge students, extended coverage in molecular biology and development, an expanded glossary of terms, and updated historical landmarks. Students at all levels, from beginning biologists and premedical students to graduates seeking a review of basic genetics, will find this book a valuable aid. It will complement the formal presentation in any genetics textbook or stand alone as a self-paced review manual.
Publisher Description
Studies of evolution at the molecular level have experienced phenomenal growth in the last few decades, due to rapid accumulation of genetic sequence data, improved computer hardware and software, and the development of sophisticated analytical methods. The flood of genomic data has generated an acute need for powerful statistical methods and efficient computational algorithms to enable their effective analysis and interpretation. Molecular Evolution: a statistical approach presents and explains modern statistical methods and computational algorithms for the comparative analysis of genetic sequence data in the fields of molecular evolution, molecular phylogenetics, statistical phylogeography, and comparative genomics. Written by an expert in the field, the book emphasizes conceptual understanding rather than mathematical proofs. The text is enlivened with numerous examples of real data analysis and numerical calculations to illustrate the theory, in addition to the working problems at the end of each chapter. The coverage of maximum likelihood and Bayesian methods are in particular up-to-date, comprehensive, and authoritative. This advanced textbook is aimed at graduate level students and professional researchers (both empiricists and theoreticians) in the fields of bioinformatics and computational biology, statistical genomics, evolutionary biology, molecular systematics, and population genetics. It will also be of relevance and use to a wider audience of applied statisticians, mathematicians, and computer scientists working in computational biology.
This book brings together leading experts to provide an introduction to genetic epidemiology that begins with a primer in human molecular genetics through all the standard methods in population genetics and genetic epidemiology required for an adequate grounding in the field.
This open access volume presents state-of-the-art inference methods in population genomics, focusing on data analysis based on rigorous statistical techniques. After introducing general concepts related to the biology of genomes and their evolution, the book covers state-of-the-art methods for the analysis of genomes in populations, including demography inference, population structure analysis and detection of selection, using both model-based inference and simulation procedures. Last but not least, it offers an overview of the current knowledge acquired by applying such methods to a large variety of eukaryotic organisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, pointers to the relevant literature, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Statistical Population Genomics aims to promote and ensure successful applications of population genomic methods to an increasing number of model systems and biological questions. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
This concise, entry level text provides an introduction to the importance of genetic studies in conservation and presents the essentials of the discipline in an easy-to-follow format, with main points and terms clearly highlighted. The authors assume only a basic knowledge of Mendelian genetics and simple statistics, making the book accessible to those with a limited background in these areas. Connections between conservation genetics and the wider field of conservation biology are interwoven throughout the book. Worked examples are provided throughout to help illustrate key equations and glossary and suggestions for further reading provide additional support for the reader. Many beautiful pen and ink portraits of endangered species are included to enhance the text. Written for short, introductory level courses in genetics, conservation genetics and conservation biology, this book will also be suitable for practising conservation biologists, zoo biologists and wildlife managers.