Download Free A Primer In Fluid Mechanicsdynamics Of Flows In One Space Dimension Book in PDF and EPUB Free Download. You can read online A Primer In Fluid Mechanicsdynamics Of Flows In One Space Dimension and write the review.

This distinctive text presents the basic principles of fluid mechanics by means of one-dimensional flow examples - differing significantly in style and content from other books. A Primer in Fluid Mechanics contains: an overview of fluid properties and the kinetic theory of gases information on the fundamental equations of fluid mechanics, including historical references and background information introductory discussions on fluid properties and fluid statics a comprehensive chapter on compressible flow a variety of applications on non-steady flow, including non-steady gas dynamics a brief introduction to acoustics Novel provisos in the text include an analysis of the static stability of a floating two-dimensional parabolic section viscous flow through an elastic duct several geometries in non-steady tank draining, including a singular perturbation problem Chapters also discuss physical properties, atmospheric stability, thermodynamics, energy and momentum equations, dimensional analysis, and historical perspectives of flows in pipes and conduits. A Primer in Fluid Mechanics offers a rigorous text for the curious student and for the research engineer seeking a readily available guide to the more refined treatments in the literature - supporting classical and current discussions as well as theoretical and practical concepts.
This distinctive text presents the basic principles of fluid mechanics by means of one-dimensional flow examples - differing significantly in style and content from other books. A Primer in Fluid Mechanics contains: an overview of fluid properties and the kinetic theory of gases information on the fundamental equations of fluid mechanics, including historical references and background information introductory discussions on fluid properties and fluid statics a comprehensive chapter on compressible flow a variety of applications on non-steady flow, including non-steady gas dynamics a brief introduction to acoustics Novel provisos in the text include an analysis of the static stability of a floating two-dimensional parabolic section viscous flow through an elastic duct several geometries in non-steady tank draining, including a singular perturbation problem Chapters also discuss physical properties, atmospheric stability, thermodynamics, energy and momentum equations, dimensional analysis, and historical perspectives of flows in pipes and conduits. A Primer in Fluid Mechanics offers a rigorous text for the curious student and for the research engineer seeking a readily available guide to the more refined treatments in the literature - supporting classical and current discussions as well as theoretical and practical concepts.
This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.
Uncover Effective Engineering Solutions to Practical Problems With its clear explanation of fundamental principles and emphasis on real world applications, this practical text will motivate readers to learn. The author connects theory and analysis to practical examples drawn from engineering practice. Readers get a better understanding of how they can apply these concepts to develop engineering answers to various problems. By using simple examples that illustrate basic principles and more complex examples representative of engineering applications throughout the text, the author also shows readers how fluid mechanics is relevant to the engineering field. These examples will help them develop problem-solving skills, gain physical insight into the material, learn how and when to use approximations and make assumptions, and understand when these approximations might break down. Key Features of the Text * The underlying physical concepts are highlighted rather than focusing on the mathematical equations. * Dimensional reasoning is emphasized as well as the interpretation of the results. * An introduction to engineering in the environment is included to spark reader interest. * Historical references throughout the chapters provide readers with the rich history of fluid mechanics.
This book provides a guiding thread between the distant fields of fluid mechanics and clinical cardiology. Well rooted in the science of fluid dynamics, it drives the reader across progressively more realistic scenarios up to the complexity of routine medical applications. Based on the author’s 25 years of collaborations with cardiologists, it helps engineers learn communicating with clinicians, yet maintaining the rigor of scientific disciplines. This book starts with a description of the fundamental elements of fluid dynamics in large blood vessels. This is achieved by introducing a rigorous physical background accompanied by examples applied to the circulation, and by presenting classic and recent results related to the application of fluid dynamics to the cardiovascular physiology. It then explores more advanced topics for a physics-based understanding of phenomena effectively encountered in clinical cardiology. It stands as an ideal learning resource for physicists and engineers working in cardiovascular fluid dynamics, industry engineers working on biomedical/cardiovascular technology, and students in bio-fluid dynamics. Written with a concise style, this textbook is accessible to a broad readership, including students, physical scientists and engineers, offering an entry point into this multi-disciplinary field. It includes key concepts exemplified by illustrations using cutting-edge imaging, references to modelling and measurement technologies, and includes unique original insights.