Download Free A Practical Guide For Simulation And Fpga Implementation Of Digital Design Book in PDF and EPUB Free Download. You can read online A Practical Guide For Simulation And Fpga Implementation Of Digital Design and write the review.

This book introduces the FPGA technology used in the laboratory sessions, and provides a step-by-step guide for designing and simulation of digital circuits. It utilizes the VHDL language, which is one of the most common language used to describe the design of digital systems. The Quartus II, Xilinx ISE 14.7 and ModelSim software are used to process the VHDL code and make simulations, and then the Altera and Xilinx FPGA platforms are employed to implement the simulated digital designs. The book is composed of four parts. The first part of this book has two chapters and covers various aspects: FPGA architectures, ASIC vs FPGA comparison, FPGA design flow and basic VHDL concepts necessary to describe the design of digital systems. The second part of the book includes three chapters that deal with the design of digital circuits such as combinational logic circuits, sequential logic circuits and finite state machines. The third part of the book is reserved for laboratory projects carried out on the FPGA platform. It is a largely hands-on lab class for design digital circuits and implementing their designs on the Altera FPGA platform. Finally, the fourth part of this work is devoted to recent applications carried out on FPGAs, in particular advanced techniques in renewable energy systems. The book is primarily intended for students, scholars, and industrial practitioners interested in the design of modern digital systems.
Master FPGA digital system design and implementation with Verilog and VHDL This practical guide explores the development and deployment of FPGA-based digital systems using the two most popular hardware description languages, Verilog and VHDL. Written by a pair of digital circuit design experts, the book offers a solid grounding in FPGA principles, practices, and applications and provides an overview of more complex topics. Important concepts are demonstrated through real-world examples, ready-to-run code, and inexpensive start-to-finish projects for both the Basys and Arty boards. Digital System Design with FPGA: Implementation Using Verilog and VHDL covers: • Field programmable gate array fundamentals • Basys and Arty FPGA boards • The Vivado design suite • Verilog and VHDL • Data types and operators • Combinational circuits and circuit blocks • Data storage elements and sequential circuits • Soft-core microcontroller and digital interfacing • Advanced FPGA applications • The future of FPGA
This book provides the advanced issues of FPGA design as the underlying theme of the work. In practice, an engineer typically needs to be mentored for several years before these principles are appropriately utilized. The topics that will be discussed in this book are essential to designing FPGA's beyond moderate complexity. The goal of the book is to present practical design techniques that are otherwise only available through mentorship and real-world experience.
The book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in electrical, electronics, and communication engineering. The objective of this book is to help the readers to understand the concepts of digital system design as well as to motivate the students to pursue research in this field. Verilog Hardware Description Language (HDL) is preferred in this book to realize digital architectures. Concepts of Verilog HDL are discussed in a separate chapter and many Verilog codes are given in this book for better understanding. Concepts of system Verilog to realize digital hardware are also discussed in a separate chapter. The book covers basic topics of digital logic design like binary number systems, combinational circuit design, sequential circuit design, and finite state machine (FSM) design. The book also covers some advanced topics on digital arithmetic like design of high-speed adders, multipliers, dividers, square root circuits, and CORDIC block. The readers can learn about FPGA and ASIC implementation steps and issues that arise at the time of implementation. One chapter of the book is dedicated to study the low-power design techniques and another to discuss the concepts of static time analysis (STA) of a digital system. Design and implementation of many digital systems are discussed in detail in a separate chapter. In the last chapter, basics of some advanced FPGA design techniques like partial re-configuration and system on chip (SoC) implementation are discussed. These designs can help the readers to design their architecture. This book can be very helpful to both undergraduate and postgraduate students and researchers.
This book provides step-by-step guidance on how to design VLSI systems using Verilog. It shows the way to design systems that are device, vendor and technology independent. Coverage presents new material and theory as well as synthesis of recent work with complete Project Designs using industry standard CAD tools and FPGA boards. The reader is taken step by step through different designs, from implementing a single digital gate to a massive design consuming well over 100,000 gates. All the design codes developed in this book are Register Transfer Level (RTL) compliant and can be readily used or amended to suit new projects.
This book collects the best practices FPGA-based Prototyping of SoC and ASIC devices into one place for the first time, drawing upon not only the authors' own knowledge but also from leading practitioners worldwide in order to present a snapshot of best practices today and possibilities for the future. The book is organized into chapters which appear in the same order as the tasks and decisions which are performed during an FPGA-based prototyping project. We start by analyzing the challenges and benefits of FPGA-based Prototyping and how they compare to other prototyping methods. We present the current state of the available FPGA technology and tools and how to get started on a project. The FPMM also compares between home-made and outsourced FPGA platforms and how to analyze which will best meet the needs of a given project. The central chapters deal with implementing an SoC design in FPGA technology including clocking, conversion of memory, partitioning, multiplexing and handling IP amongst many other subjects. The important subject of bringing up the design on the FPGA boards is covered next, including the introduction of the real design into the board, running embedded software upon it in and debugging and iterating in a lab environment. Finally we explore how the FPGA-based Prototype can be linked into other verification methodologies, including RTL simulation and virtual models in SystemC. Along the way, the reader will discover that an adoption of FPGA-based Prototyping from the beginning of a project, and an approach we call Design-for-Prototyping, will greatly increase the success of the prototype and the whole SoC project, especially the embedded software portion. Design-for-Prototyping is introduced and explained and promoted as a manifesto for better SoC design. Readers can approach the subjects from a number of directions. Some will be experienced with many of the tasks involved in FPGA-based Prototyping but are looking for new insights and ideas; others will be relatively new to the subject but experienced in other verification methodologies; still others may be project leaders who need to understand if and how the benefits of FPGA-based prototyping apply to their next SoC project. We have tried to make each subject chapter relatively standalone, or where necessary, make numerous forward and backward references between subjects, and provide recaps of certain key subjects. We hope you like the book and we look forward to seeing you on the FPMM on-line community soon (go to www.synopsys.com/fpmm).
DIGITAL LOGIC
This book attempts to capture the spirit of the ''Bronze Age'' of video games, when video games were designed as circuits, not as software. We'll delve into these circuits as they morph from Pong into programmable personal computers and game consoles. Instead of wire-wrap and breadboards, we'll use modern tools to approximate these old designs in a simulated environment from the comfort of our keyboards. At the end of this adventure, you should be well-equipped to begin exploring the world of FPGAs, and maybe even design your own game console. You'll use the 8bitworkshop.com IDE to write Verilog programs that represent digital circuits, and see your code run instantly in the browser.