Download Free A Practical Dynamic Modulus Testing Protocol Book in PDF and EPUB Free Download. You can read online A Practical Dynamic Modulus Testing Protocol and write the review.

The dynamic modulus test is widely accepted by pavement agencies as the critical parameter for the recently proposed mechanistic empirical design procedure and the candidate of the simple performance test to accompany the Superpave volumetric mix design process. However, the specified dynamic modulus test procedure is time-consuming and costly. State pavement agencies are seeking a more practical test protocol. This paper presents a method for identifying a practical dynamic modulus testing procedure. The currently well-adopted method of calculating the dynamic method is discussed and compared to the more fundamental dynamic modulus calculation method by using actual experimental data from two different asphalt mixtures. It was found that the NCHRP report proposed method produces higher modulus values, but the difference is less than 10 %, as indicates that the simple peak to peak method can be used in the calculation without compromising accuracy. A comprehensive dynamic modulus test, which incorporates strain level, test temperature, and frequency, was performed on one asphalt mixture. Experimental data were analyzed with t-test at the 95 % level of confidence. The analysis results show no statistical difference between the dynamic modulus for the two studied strain levels and no permanent damage was found on tested specimens for all three test temperatures. Comparison of the master curves built by different temperature and frequency combinations illustrates redundancy in test temperature and frequency. A more practical dynamic modulus test procedure is proposed based upon the evaluation. This research shows that three test temperatures, 4.4°C, 21.1°C, and 37.8°C, and six frequencies, 25, 10, 5, 1, 0.5 and 0.1 Hz, plus one additional frequency of 0.01 Hz at 37.8°C are adequate to build a smooth master curve to satisfactorily characterize asphalt mixtures.
TRB¿s National Cooperative Highway Research Program (NCHRP) Report 614: Refining the Simple Performance Tester for Use in Routine Practice explores the develop of a practical, economical simple performance tester (SPT) for use in routine hot-mix asphalt (HMA) mix design and in the characterization of HMA materials for pavement structural design with the Mechanistic-Empirical Pavement Design Guide.
Issues in Teaching and Education Policy, Research, and Special Topics: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Education Testing and Evaluation. The editors have built Issues in Teaching and Education Policy, Research, and Special Topics: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Education Testing and Evaluation in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Teaching and Education Policy, Research, and Special Topics: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
TRB’s National Cooperative Highway Research Program (NCHRP) Report 702: Precision of the Dynamic Modulus and Flow Number Tests Conducted with the Asphalt Mixture Performance Tester describes the development of precision statements for the dynamic modulus and flow number tests conducted with the Asphalt Mixture Performance Tester.
Explores whether combining the environmental conditioning system with the simple performance test would provide a superior procedure for determining the moisture susceptibility of hot-mix asphalt (HMA).
Highway engineers are facing the challenge not only to design and construct sustainable and safe pavements properly and economically. This implies a thorough understanding of materials behaviour, their appropriate use in the continuously changing environment, and implementation of constantly improved technologies and methodologies. Bituminous Mixtures and Pavements VII contains more than 100 contributions that were presented at the 7th International Conference ‘Bituminous Mixtures and Pavements’ (7ICONFBMP, Thessaloniki, Greece 12-14 June 2019). The papers cover a wide range of topics: - Bituminous binders - Aggregates, unbound layers and subgrade - Bituminous mixtures (Hot, Warm and Cold) - Pavements (Design, Construction, Maintenance, Sustainability, Energy and environment consideration) - Pavement management - Pavement recycling - Geosynthetics - Pavement assessment, surface characteristics and safety - Posters Bituminous Mixtures and Pavements VII reflects recent advances in highway materials technology and pavement engineering, and will be of interest to academics and professionals interested or involved in these areas.