Download Free A Practical And Theoretical System Of Arithmetic Book in PDF and EPUB Free Download. You can read online A Practical And Theoretical System Of Arithmetic and write the review.

In this fully revised second edition of the classic Young Children Reinvent Arithmetic, Constance Kamii describes and develops an innovative program of teaching arithmetic in the early elementary grades. Kamii bases her educational strategies on renowned constructivist Jean Piaget's scientific ideas of how children develop logico-mathematical thinking. Written in collaboration with a classroom teacher, and premised upon the conviction that children are capable of much more than teachers and parents generally realize, the book provides a rich theoretical foundation and a compelling explanation of educational goals and objectives. Kamii calls attention to the ways in which traditional textbook-based teaching can be harmful to children’s development of numerical reasoning, and uses extensive research and classroom-tested studies to illuminate the efficacy of the approach. This book is full of practical suggestions and developmentally appropriate activities that can be used to stimulate numerical thinking among students of varying abilities and learning styles, both within and outside of the classroom. “In this new edition of her important book, Connie Kamii demonstrates scholarship not just in what she has written, but in her willingness to incorporate new ideas and findings. Many people update their books; few assiduously revise them, confronting what they believe to be past errors or gaps in their thinking. Such intellectual honesty, along with consistent connections between theory and practice, make this book a solid contribution to mathematics education of young children.” —Douglas Clements, State University of New York at Buffalo “The development of young children’s logico-mathematical knowledge is at the heart of this text. Similar to the first edition, this revision provides a rich theoretical foundation as well as child-centered activities and principles of teaching that support problem solving, communicating, reasoning, making connections, and representing mathematical ideas. In this great resource for preservice and in-service elementary teachers, Professor Kamii continues to help us understand the implications of Piagetian theory.” —Frances R. Curcio, New York University
This balanced introduction covers all fundamentals, from the real number system and point sets to set theory and metric spaces. Useful references to the literature conclude each chapter. 1956 edition.
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering
This text is formulated on the fundamental idea that much of mathematics, including the classical number systems, can best be based on set theory. 1961 edition.
This book brings together and builds on the current research efforts on adaptation, conceptualization, and theorization of Lesson Study (LS). It synthesizes and illustrates major perspectives for theorizing LS and enriches the conceptualization of LS by interpreting the activity as it is used in Japan and China from historical and cultural perspectives. Presenting the practices and theories of LS with practicing teachers and prospective teachers in more than 10 countries, it enables the reader to take a comparative perspective. Finally, the book presents and discusses studies on key aspects of LS such as lesson planning, post-lesson discussion, guiding theories, connection between research and practice, and upscaling. Lesson Study, which has originated in Asia as a powerful effective professional development model, has spread globally. Although the positive effects of lesson study on teacher learning, student learning, and curriculum reforms have been widely documented, conceptualization of and research on LS have just begun to emerge. This book, including 38 chapters contributed by 90 scholars from 21 countries, presents a truly international collaboration on research on and adaptation of LS, and significantly advances the development of knowledge about this process. Chapter 15: "How Variance and Invariance Can Inform Teachers’ Enactment of Mathematics Lessons" of this book is available open access under a CC BY 4.0 license at link.springer.com Theory and Practice of Lesson Study in Mathematics: An International Perspective shows that the power of Lesson Study to transform the role of teachers in classroom research cannot be explained by a simple replication model. Here we see Lesson Study being successful internationally when its key principles and practices are taken seriously and are adapted to meet local issues and challenges. (Max Stephens, Senior research fellow at The University of Melbourne) It works. Instruction improves, learning improves. Wide scale? Enduring? Deep impact? Lesson study has it. When something works as well as lesson study does, while alternative systems for improving instruction fail, or only succeed on small scale or evaporate as quickly as they show promise, it is time to understand how and why lesson study works. This volume brings the research on lesson study together from around the world. Here is what we already know and here is the way forward for research and practice informed by research. It is time to wake up and pay attention to what has worked so well, on wide scale for so long. (Phil Dara, A leading author of the Common Core State Standards of Mathematics in the U.S.)
One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.