Download Free A Perspective On Stereophonic Acoustic Echo Cancellation Book in PDF and EPUB Free Download. You can read online A Perspective On Stereophonic Acoustic Echo Cancellation and write the review.

Single-channel hands-free teleconferencing systems are becoming popular. In order to enhance the communication quality of these systems, more and more stereophonic sound devices with two loudspeakers and two microphones are deployed. Because of the coupling between loudspeakers and microphones, there may be strong echoes, which make real-time communication very difficult. The best way we know to cancel these echoes is via a stereo acoustic echo canceller (SAEC), which can be modelled as a two-input/two-output system with real random variables. In this work, the authors recast this problem into a single-input/single-output system with complex random variables thanks to the widely linear model. From this new convenient formulation, they re-derive the most important aspects of a SAEC, including identification of the echo paths with adaptive filters, double-talk detection, and suppression.
This book brings together many advanced topics in network and acoustic echo cancellation aimed towards enhancing the echo cancellation performance of next-generation telecommunication systems. The resulting compendium provides a coherent treatment of such topics not found otherwise in journals or other books.
Authors are well known and highly recognized by the "acoustic echo and noise community." Presents a detailed description of practical methods to control echo and noise Develops a statistical theory for optimal control parameters and presents practical estimation and approximation methods
This book publishes the best papers accepted and presented at the 3rd edition of the International Conference on Advanced Intelligent Systems for Sustainable Development Applied to Agriculture, Energy, Health, Environment, Industry, Education, Economy, and Security (AI2SD’2020). This conference is one of the biggest amalgamations of eminent researchers, students, and delegates from both academia and industry where the collaborators have an interactive access to emerging technology and approaches globally. In this book, readers find the latest ideas addressing technological issues relevant to all areas of the social and human sciences for sustainable development. Due to the nature of the conference with its focus on innovative ideas and developments, the book provides the ideal scientific and brings together very high-quality chapters written by eminent researchers from different disciplines, to discover the most recent developments in scientific research.
158 2. Wiener Filtering 159 3. Speech Enhancement by Short-Time Spectral Modification 3. 1 Short-Time Fourier Analysis and Synthesis 159 160 3. 2 Short-Time Wiener Filter 161 3. 3 Power Subtraction 3. 4 Magnitude Subtraction 162 3. 5 Parametric Wiener Filtering 163 164 3. 6 Review and Discussion Averaging Techniques for Envelope Estimation 169 4. 169 4. 1 Moving Average 170 4. 2 Single-Pole Recursion 170 4. 3 Two-Sided Single-Pole Recursion 4. 4 Nonlinear Data Processing 171 5. Example Implementation 172 5. 1 Subband Filter Bank Architecture 172 173 5. 2 A-Posteriori-SNR Voice Activity Detector 5. 3 Example 175 6. Conclusion 175 Part IV Microphone Arrays 10 Superdirectional Microphone Arrays 181 Gary W. Elko 1. Introduction 181 2. Differential Microphone Arrays 182 3. Array Directional Gain 192 4. Optimal Arrays for Spherically Isotropic Fields 193 4. 1 Maximum Gain for Omnidirectional Microphones 193 4. 2 Maximum Directivity Index for Differential Microphones 195 4. 3 Maximimum Front-to-Back Ratio 197 4. 4 Minimum Peak Directional Response 200 4. 5 Beamwidth 201 5. Design Examples 201 5. 1 First-Order Designs 202 5. 2 Second-Order Designs 207 5. 3 Third-Order Designs 216 5. 4 Higher-Order designs 221 6. Optimal Arrays for Cylindrically Isotropic Fields 222 6. 1 Maximum Gain for Omnidirectional Microphones 222 6. 2 Optimal Weights for Maximum Directional Gain 224 6. 3 Solution for Optimal Weights for Maximum Front-to-Back Ratio for Cylindrical Noise 225 7. Sensitivity to Microphone Mismatch and Noise 230 8.
This book explains the motivation for using microphone arrays as opposed to using a single sensor for sound acquisition. The book then goes on to summarize the most useful ideas, concepts, results, and new algorithms therein. The material presented in this work includes analysis of the advantages of using microphone arrays, including dimensionality reduction to remove the redundancy while preserving the variability of the array signals using the principal component analysis (PCA). The authors also discuss benefits such as beamforming with low-rank approximations, fixed, adaptive, and robust distortionless beamforming, differential beamforming, and a new form of binaural beamforming that takes advantage of both beamforming and human binaural hearing properties to improve speech intelligibility. The book makes the microphone array signal processing theory and applications available in a complete and self-contained text. The authors attempt to explain the main ideas in a clear and rigorous way so that the reader can easily capture the potentials, opportunities, challenges, and limitations of microphone array signal processing. This book is written for those who work on the topics of microphone arrays, noise reduction, speech enhancement, speech communication, and human-machine speech interfaces.
This book treats important topics in "Acoustic Echo and Noise Control" and reports the latest developments. Methods for enhancing the quality of transmitted speech signals are gaining growing attention in universities and in industrial development laboratories. This book, written by an international team of highly qualified experts, concentrates on the modern and advanced methods.
This book treats the topic of extending the adaptive filtering theory in the context of massive multichannel systems by taking into account a priori knowledge of the underlying system or signal. The starting point is exploiting the sparseness in acoustic multichannel system in order to solve the non-uniqueness problem with an efficient algorithm for adaptive filtering that does not require any modification of the loudspeaker signals. The book discusses in detail the derivation of general sparse representations of acoustic MIMO systems in signal or system dependent transform domains. Efficient adaptive filtering algorithms in the transform domains are presented and the relation between the signal- and the system-based sparse representations is emphasized. Furthermore, the book presents a novel approach to spatially preprocess the loudspeaker signals in a full-duplex communication system. The idea of the preprocessing is to prevent the echoes from being captured by the microphone array in order to support the AEC system. The preprocessing stage is given as an exemplarily application of a novel unified framework for the synthesis of sound figures. Finally, a multichannel system for the acoustic echo suppression is presented that can be used as a postprocessing stage for removing residual echoes. As first of its kind, it extracts the near-end signal from the microphone signal with a distortionless constraint and without requiring a double-talk detector.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neurons” capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for large‐scale computing and artificial intelligence. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
This work addresses this problem in the short-time Fourier transform (STFT) domain. We divide the general problem into five basic categories depending on the number of microphones being used and whether the interframe or interband correlation is considered. The first category deals with the single-channel problem where STFT coefficients at different frames and frequency bands are assumed to be independent. In this case, the noise reduction filter in each frequency band is basically a real gain. Since a gain does not improve the signal-to-noise ratio (SNR) for any given subband and frame, the noise reduction is basically achieved by liftering the subbands and frames that are less noisy while weighing down on those that are more noisy. The second category also concerns the single-channel problem. The difference is that now the interframe correlation is taken into account and a filter is applied in each subband instead of just a gain. The advantage of using the interframe correlation is that we can improve not only the long-time fullband SNR, but the frame-wise subband SNR as well. The third and fourth classes discuss the problem of multichannel noise reduction in the STFT domain with and without interframe correlation, respectively. In the last category, we consider the interband correlation in the design of the noise reduction filters. We illustrate the basic principle for the single-channel case as an example, while this concept can be generalized to other scenarios. In all categories, we propose different optimization cost functions from which we derive the optimal filters and we also define the performance measures that help analyzing them.