Download Free A Perspective On Intelligent Systems Book in PDF and EPUB Free Download. You can read online A Perspective On Intelligent Systems and write the review.

Naturally Intelligent Systems offers a comprehensive introduction to neural networks.
Ongoing advancements in modern technology have led to significant developments in intelligent systems. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Intelligent Systems: Concepts, Methodologies, Tools, and Applications contains a compendium of the latest academic material on the latest breakthroughs and recent progress in intelligent systems. Including innovative studies on information retrieval, artificial intelligence, and software engineering, this multi-volume book is an ideal source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of intelligent systems.
The volume Software Engineering Perspectives and Application in Intelligent Systems presents new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of Software Engineering. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented. The 5th Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.
"This book assembles semiotics and artificial intelligence techniques in order to design new kinds of intelligence systems; it changes the research field of artificial intelligence by incorporating the study of meaning processes (semiosis), from the perspective of formal sciences, linguistics, and philosophy"--Provided by publisher.
Distributed Intelligent Systems: A Coordination Perspective comprehensively answers commonly asked questions about coordination in agent-oriented distributed systems. Characterizing the state-of-the-art research in the field of coordination with regard to the development of distributed agent-oriented systems is a particularly complex endeavour; while existing books deal with specific aspects of coordination, the major contribution of this book lies in the attempt to provide an in-depth review covering a wide range of issues regarding multi-agent coordination in Distributed Artificial Intelligence. Key features: Unveils the lack of coherence and order that characterizes the area of research pertaining to coordination of distributed intelligent systems Examines coordination models, frameworks, strategies and techniques to enable the development of distributed intelligent agent-oriented systems Provides specific recommendations to realize more widespread deployment of agent-based systems
This book presents real-world problems and pioneering research that reflect novel approaches to cybernetics, algorithms and software engineering in the context of intelligent systems. It gathers the peer-reviewed proceedings of the 2nd Computational Methods in Systems and Software 2018 (CoMeSySo 2018), a conference that broke down traditional barriers by being held online. The goal of the event was to provide an international forum for discussing the latest high-quality research results.
Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.
This volume constitutes the refereed proceedings of the 7th International Conference on Modelling and Development of Intelligent Systems, MDIS 2020, held in Sibiu, Romania, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 25 revised full papers presented in the volume were carefully reviewed and selected from 57 submissions. The papers are organized in topical sections on ​evolutionary computing; intelligent systems for decision support; machine learning; mathematical models for development of intelligent systems; modelling and optimization of dynamic systems; ontology engineering.