Download Free A Novel Skin Lesion Detection Approach Using Neutrosophic Clustering And Adaptive Region Growing In Dermoscopy Images Book in PDF and EPUB Free Download. You can read online A Novel Skin Lesion Detection Approach Using Neutrosophic Clustering And Adaptive Region Growing In Dermoscopy Images and write the review.

This paper proposes novel skin lesion detection based on neutrosophic clustering and adaptive region growing algorithms applied to dermoscopic images, called NCARG. First, the dermoscopic images are mapped into a neutrosophic set domain using the shearlet transform results for the images.
Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
Malignant melanoma is among the fastest increasing malignancies in many countries. Due to its propensity to metastasize and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. In non-Caucasian populations, melanomas are frequently located in acral volar areas and their dermoscopic appearance differs from the non-acral ones. Although lesion segmentation is a natural preliminary step towards its further analysis, so far virtually no acral skin lesion segmentation method has been proposed. Our goal was to develop an effective segmentation algorithm dedicated for acral lesions. We obtain a superpixel oversegmentation of a lesion image by performing clustering in a joint color-spatial 5d space defined by coordinates of CIELAB color space and spatial coordinates of the image. We then construct a region adjacency graph based on this superpixel representation. We obtain the ultimate segmentation result by performing a hierarchical region merging. The proposed segmentation method has been tested on 134 color dermoscopic images of different types of acral melanocytic lesions (including melanoma) from various sources. It achieved an average Dice index value of 0.85, accuracy 0.91, precision 0.89, sensitivity 0.87, and specificity 0.88. Experimental results suggest the effectiveness of the proposed method, which would help improve the accuracy of other diagnostic algorithms for acral melanoma detection. The results also suggest that the computational approach towards lesion segmentation yields more stable output than manual segmentation by dermatologists.
Clustering algorithm is one of the important research topics in the field of machine learning. Neutrosophic clustering is the generalization of fuzzy clustering and has been applied to many fields. this paper presents a new neutrosophic clustering algorithm with the help of regularization. Firstly, the regularization term is introduced into the FC-PFS algorithm to generate sparsity, which can reduce the complexity of the algorithm on large data sets. Secondly, we propose a method to simplify the process of determining regularization parameters. Finally, experiments show that the clustering results of this algorithm on artificial data sets and real data sets are mostly better than other clustering algorithms. Our clustering algorithm is effective in most cases.
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
The Proceeding includes the research contribution from the International Conference on Next-Gen Technologies in Computational Intelligence (NGTCA 2023) held on March 24th 2023 at Vels Institute of Science, Technology and Advanced Studies. NGCTA 2023 is the flagship conference of the Computer Society of India (Region 7). Computer Society of India (CSI) is the largest association of IT professionals in India. CSI is a non-profit organization established in 1965 and its members are committed to the advancement of theory and practice of Computer Engineering and Technology Systems. The Mission of CSI is to facilitate research, knowledge sharing, learning, and career enhancement for all categories of IT professionals, while simultaneously inspiring and nurturing new entrants into the industry and helping them to integrate into the IT community. At present, CSI has 76chapters across India, over 550 student branches with 1,00,000 plus members. It serves its members through technical events, seminars, workshops, conferences, publications & journals, research projects, competitions, special interest groups, awards & recognitions, etc. Various CSI chapters conduct Research Convention every year.
Innovation in healthcare is currently a “hot” topic. Innovation allows us to think differently, to take risks and to develop ideas that are far better than existing solutions. Currently, there is no single book that covers all topics related to microelectronics, sensors, data, system integration and healthcare technology assessment in one reference. This book aims to critically evaluate current state-of-the-art technologies and provide readers with insights into developing new solutions. With contributions from a fully international team of experts across electrical engineering and biomedical fields, the book discusses how advances in sensing technology, computer science, communications systems and proteomics/genomics are influencing healthcare technology today.