Download Free A Novel Fertiliser Drawn Forward Osmosis Desalination For Fertigation Book in PDF and EPUB Free Download. You can read online A Novel Fertiliser Drawn Forward Osmosis Desalination For Fertigation and write the review.

1.1 Background Water–stress is becoming one of the greatest challenges of the 21st century. The fast growth of population, tourism, and agriculture development in the world has resulted in a great demand for access to clean water [3]. Most of the developing regions of the world are still suffering from water scarcity. The problem of water shortage is being extended to other nations of the world. The lack of access to safe drinking water poses significant problems globally. Fresh water is not available for around 1.2 billion people worldwide while around 2.6 billion may obtain limited or unsafe water. This may be the result of climate change with extreme industrial and agriculture activities. It was assumed that by 2025, two thirds of people around the world will be living in water-stressed countries [4]. Thus, the requirement of potable water to sustain human life in the world will rise from 4500 billion m3 to 6900 billion m3 by 2030 which goes beyond the accessible water resources [5]. Therefore, we need to meet and sustain these growing demands as soon as possible. A promising technology to meet the demand of fresh water is water desalination using membrane technology. A recent study reported that the daily production of desalinated water was up to 25 million m3 globally [6, 7]. Water desalination was developed to remove salts and other contaminants from seawater, brackish water and produced water to acquire drinking water [8]. Singh et al. [9] stated that since 1995 membrane filtration has been effective in removing microbiological species such as Giardia and Cryptosporidium. It has also been reported that membrane-based desalination provides 63.7% drinking water while thermal desalination method provides almost half of it, about 34.2% globally [10]. For instance, micro-filtration and ultrafiltration membranes can reject particles much smaller than 1 micron such as proteins, oil droplets, bacteria, etc. In contrast, Nano filtration and reverse osmosis can separate particles in the range of 1/100th to 1/1000th of a micrometre, such as aqueous salts, sugars, and amino acids [11]. Among the membrane desalination technologies, reverse osmosis (RO) is being actively used in most countries due to their significant properties and ease of obtaining drinking water.
Emerging Technologies for Sustainable Desalination Handbook provides professionals and researchers with the latest treatment activities in the advancement of desalination technology. The book enables municipalities and private companies to custom-design sustainable desalination plants that will minimize discharge, energy costs and environmental footprint. Individual case studies are included to illustrate the benefits and drawback of each technique. Sections discuss a multitude of recently developed, advanced processes, along with notable advances made in existing technologies. These processes include adsorption, forward osmosis, humidification and dehumidification, membrane distillation, pervaporation and spray type thermal processes. In addition, theoretical membrane materials, such as nanocomposite and carbon nanotube membranes are also explored. Other chapters cover the desalination of shale gas, produced water, forward osmosis for agriculture, desalination for crop irrigation, and seawater for sustainable agriculture. International in its coverage, the chapters of this handbook are contributed by leading authors and researchers in all relevant fields. - Expertly explains recent advances in sustainable desalination technology, including nanocomposite membranes, carbon nanotube membranes, forward reverse osmosis and desalination by pervaporation - Provides state-of-the-art techniques for minimizing system discharge, energy cost and environmental footprint - Includes individual case studies to illustrate the benefits and drawbacks of each technique - Discusses techniques for the custom-design of sustainable desalination plants for municipalities, private companies and industrial operations
Comprehensive Membrane Science and Engineering, Second Edition, Four Volume Set is an interdisciplinary and innovative reference work on membrane science and technology. Written by leading researchers and industry professionals from a range of backgrounds, chapters elaborate on recent and future developments in the field of membrane science and explore how the field has advanced since the previous edition published in 2010. Chapters are written by academics and practitioners across a variety of fields, including chemistry, chemical engineering, material science, physics, biology and food science. Each volume covers a wide spectrum of applications and advanced technologies, such as new membrane materials (e.g. thermally rearranged polymers, polymers of intrinsic microporosity and new hydrophobic fluoropolymer) and processes (e.g. reverse electrodialysis, membrane contractors, membrane crystallization, membrane condenser, membrane dryers and membrane emulsifiers) that have only recently proved their full potential for industrial application. This work covers the latest advances in membrane science, linking fundamental research with real-life practical applications using specially selected case studies of medium and large-scale membrane operations to demonstrate successes and failures with a look to future developments in the field. Contains comprehensive, cutting-edge coverage, helping readers understand the latest theory Offers readers a variety of perspectives on how membrane science and engineering research can be best applied in practice across a range of industries Provides the theory behind the limits, advantages, future developments and failure expectations of local membrane operations in emerging countries
Abstract: Due to the growing pressure on the conventional water resources and the increasing population in Egypt, attention has been given to increase the share of seawater desalination in total water resources mix. The most common desalination technology in Egypt is the reverse osmosis (RO) desalination which, beside the production of fresh water, results in large amounts of high salinity brine that is normally being disposed of into the sea. Since the generated brine usually contains traces of chemicals, which have been used for the pretreatment of water, along with a wide range of heavy metals resulting from the corrosion of the pipes, the discharge of the brine into the sea represents a serious environmental challenge if not properly managed. In order to reach an improved overall brine management process, a multitude of research work focused on investigating different techniques in that regard so that the impact on the surrounding environment becomes minimal. A number of parameters have been identified as the key factors which should be considered to reduce the harmful impacts on the environment. This includes both the volume and the chemical composition of the brine, geographical location and available area of the disposal site as well as the capacity of the desalination plant. The volume reduction of the brine could be achieved using different techniques; one of which is the fertilizer drawn forward osmosis (FDFO) process. In that process, RO brine is introduced as the feed solution (FS) while a concentrated fertilizer is used as the draw solution (DS). The process results in further extraction of water from the FS which means a reduction in its volume. The final diluted DS can be used for fertilized irrigation or “Fertigation”; an application that can fill a gap in a country like Egypt with the majority of its water consumption is dedicated for agricultural use. In earlier studies, several fertilizer solutions have been tested as potential DS’s to identify the best performing fertilizers with the highest financial feasibility. In this research, an FDFO process was tested, in both bench-scale and pilot-scale investigations, for the volume reduction of a synthetic brine using a locally manufactured industrial-grade ammonium sulphate (NH4)2SO4 fertilizer as DS and a commercial FO membrane. This work investigated the performance of the tested fertilizer in terms of the resulting water flux at the highest concentration possible of the DS with a fixed concentration of the FS which simulated the brine generated by the RO desalination plants. The aim of the investigation was to perform a techno-economic assessment of the feasibility of using the FDFO process with ammonium sulphate fertilizer as DS to reduce the volume of the brine by extracting water to dilute the DS for a less environmentally challenging management of the brine. In addition to the advantage of reducing the volume of the brine, the resulting diluted DS will be further mixed with the addition of fresh water from the RO plant permeate to reduce its concentration of nutrients to the acceptable levels and produce fertilized water that can be used for fertigation. The bench-scale investigation showed that the process derived an average water flux of 8.09 l/h/m2 which resulted in a volume reduction, and hence a further concentration, of the brine by around 12% using an industrial-grade ammonium sulphate fertilizer as DS which was also diluted by the extracted water by almost 24%. While the pilot-scale investigation showed lower flux, the volume reduction results were consistent with those obtained from the bench-scale investigation. It was concluded that the achieved volume reduction of 12.7% using the proposed process, which requires low energy levels and produces fertilized water for fertigation, was found comparable, in terms of the overall economics of the process, to the recovery rate from brine using an RO process reported in a recent study. Considering the potential applications of the produced fertilized water, these results can be translated into an economically viable solution for the volume reduction of the brine and the production of water for fertigation compared to other reviewed approaches.
Osmotically driven membrane processes (ODMPs) including forward osmosis (FO) and pressure-retarded osmosis (PRO) have attracted increasing attention in fields such as water treatment, desalination, power generation, and life science. In contrast to pressure-driven membrane processes, e.g., reverse osmosis, which typically employs applied high pressure as driving force, ODMPs take advantages of naturally generated osmotic pressure as the sole source of driving force. In light of this, ODMPs possess many advantages over pressure-driven membrane processes. The advantages include low energy consumption, ease of equipment maintenance, low capital investment, high salt rejection, and high water flux. In the past decade, over 300 academic papers on ODMPs have been published in a variety of application fields. The number of such publications is still rapidly growing. The ODMPs' approach, fabrications, recent development and applications in wastewater treatment, power generation, seawater desalination, and gas absorption are presented in this book.
Current Trends and Future Developments on (Bio-) Membranes: Reverse and Forward Osmosis: Principles, Applications, Advances covers the important aspects of RO, FO and their combination in integrated systems, along with their specific and well-established applications. The book offers an overview of recent developments in the field of forward and reverse osmosis and their applications in water desalination, wastewater treatment, power generation and food processing. General principles, membrane module developments, membrane fouling, modeling, simulation and optimization of both technologies are also covered. The book's ultimate goal is to support the scientific community, professionals and enterprises that aspire to develop new applications. - Provides an overview of the advances made in combining reverse osmosis membrane technology and the corresponding forward osmosis - Provides a comprehensive review of advanced research on membrane processes for water desalination, wastewater treatments, etc. - Addresses key issues in process intensification and extraction of energy from renewable sources - Identifies further research needs for the practical implementation of these two membrane technologies
Just five years ago, it was generally believed that the number of food insecure people in the world was on continuous decline. Unfortunately, widespread soil degradation along with resistance to recommended agronomic practices, and little attempt to restore degraded soils have conspired with significant droughts (in regions that could least tolerat