Download Free A Note On Noise Factor Measurement Book in PDF and EPUB Free Download. You can read online A Note On Noise Factor Measurement and write the review.

The definition of noise factor, F, is reviewed and the mathematical bases for several methods of measuring noise factor are presented. Error analyses are given to determine: (1) the noise source temperatures, which minimize the noise factor measurement error, (2) an analytic expression for the expected error in F as measured by the CW methods, and (3) an analytic expression for the expected error in F as measured by the Y-Factor Method. A hypothetical receiver (of assumed characteristics) is used as a comparative example to elevate the errors to be expected in F as measured by the CW Method and by the Y-Factor Method. The importance of bandwidth as a criterion of receiver performance is stressed. The effect on the measured F produced by a change in receiver gain-bandwidth produced by a change in received gain-bandwidth produced by a change is receiver gain-bandwidth produce is considered briefly. A preliminary calculation of the source temperatures actually seen by the receiver input completes the report. The appendix is a procedural outline for measuring a receiver's noise factor by: (1) automatic noise factor meter (ANFM), (2) CW Method, and (3) Y-Factor Methods. This outline indicates the characteristics required of the test equipment and tells how to obtain the necessary data.
The metrology guide provides the basis for critical comparisons among seven measurement techniques for average noise factor and effective input noise temperature. The techniques that are described, discussed, and analyzed include the (1) Y-Factor, (2) 3-dB, (3) Automatic, (4) Gain Control, (5) CW, (6) Tangential, and (7) Cmparison Techniques. The analyses yield working equations and error equations by which accuracy capabilities are compared. Each technique is also analyzed for (a) frequency range for best measurement results, (b) special instrumentation requirements, (c) speed and convenience, (d) operator skill required, and (e) special measurement problems. General instrumentation requirements and practical measurement problems are discussed for the benefit of the non-expert metrologist. (Modified author abstract).
This comprehensive, hands-on review of the most up-to-date techniques in RF and microwave measurement combines microwave circuit theory and metrology, in-depth analysis of advanced modern instrumentation, methods and systems, and practical advice for professional RF and microwave engineers and researchers. Topics covered include microwave instrumentation, such as network analyzers, real-time spectrum analyzers and microwave synthesizers; linear measurements, such as VNA calibrations, noise figure measurements, time domain reflectometry and multiport measurements; and non-linear measurements, such as load- and source-pull techniques, broadband signal measurements, and non-linear NVAs. Each technique is discussed in detail and accompanied by state-of-the-art solutions to the unique technical challenges associated with its use. With each chapter written by internationally recognised experts in the field, this is an invaluable resource for researchers and professionals involved with microwave measurements.
The striking feature of this book is its coverage of the upper GHz domain. However, the latest technologies, applications and broad range of circuits are discussed. Design examples are provided including cookbook-like optimization strategies. This state-of-the-art book is valuable for researchers as well as for engineers in industry. Furthermore, the book serves as fruitful basis for lectures in the area of IC design.
The ability of wireless communication devices to transmit reliable information is fundamentally limited by sources of noise related to the electronic components in use. Noise in Radio-Frequency Electronics and its Measurement has five chapters that address the theoretical aspects of this subject, and concludes with a series of exercises and solutions. The book examines the origin and sources of noise inside electronic radio-frequency circuits, their impact in telecommunications, their modeling and their measurement. Particular attention is dedicated to the origins, establishment and significance of formulas that are used when the noise characteristics of an electronic circuit are modeled or measured. This book instructs the reader in the application of the examined methods and their adaptation to solving problems, as well as how to comfortably use the presented formulas.
Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook was republished by Optical Technologies, Inc. It contained the same glossary. In 1984, the Institute of Electrical and Electronic Engineers published IEEE Standard 812-1984, Definitions of Terms Relating to Fiber Optics. In 1986, with the assistance of this author, the National Communications System published FED-STD-1037A, Glossary of Telecommunications Terms, with a few fiber optics tenns. In 1988, the Electronics Industries Association issued EIA-440A, Fiber Optic Terminology, based primarily on PB82-166257. The International Electrotechnical Commission then pub lished IEC 731, Optical Communications, Terms and Definitions. In 1989, the second edition of this dictionary was published.
Knowledge of instrumentation is critical in light of the highly sensitive and precise requirements of modern processes and systems. Rapid development in instrumentation technology coupled with the adoption of new standards makes a firm, up-to-date foundation of knowledge more important than ever in most science and engineering fields. Understanding this, Robert B. Northrop produced the best-selling Introduction to Instrumentation and Measurements in 1997. The second edition continues to provide in-depth coverage of a wide array of modern instrumentation and measurement topics, updated to reflect advances in the field. See What's New in the Second Edition: Anderson Current Loop technology Design of optical polarimeters and their applications Photonic measurements with photomultipliers and channel-plate photon sensors Sensing of gas-phase analytes (electronic "noses") Using the Sagnac effect to measure vehicle angular velocity Micromachined, vibrating mass, and vibrating disk rate gyros Analysis of the Humphrey air jet gyro Micromachined IC accelerometers GPS and modifications made to improve accuracy Substance detection using photons Sections on dithering, delta-sigma ADCs, data acquisition cards, the USB, and virtual instruments and PXI systems Based on Northrop's 40 years of experience, Introduction to Instrumentation and Measurements, Second Edition is unequalled in its depth and breadth of coverage.