Download Free A Nonlinear Theory For Predicting The Effects Of Unsteady Laminar Turbulent Or Transitional Boundary Layers On The Attenuation Of Shock Waves In A Shock Tube With Experimental Comparison Book in PDF and EPUB Free Download. You can read online A Nonlinear Theory For Predicting The Effects Of Unsteady Laminar Turbulent Or Transitional Boundary Layers On The Attenuation Of Shock Waves In A Shock Tube With Experimental Comparison and write the review.

The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for shock pressure ratios up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds nuniber of 2.5 million.
Summary: The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for shock pressure ratios up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock-wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds number of 2.5 x 106.