Download Free A New Modified Neutrosophic Set Segmentation Approach Book in PDF and EPUB Free Download. You can read online A New Modified Neutrosophic Set Segmentation Approach and write the review.

Segmentation is paramount to 3D video systems employing multi-view video-plus-depth data (MVD) to implement free-viewpoint navigation and comfortable 3D viewing, modeling, and comprehension.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
Neutrosophic set, initiated by Smarandache, is a novel tool to deal with vagueness considering the truth-membership T , indeterminacy-membership I and falsity-membership F satisfying the condition 0 ≤ T + I + F ≤ 3. It can be used to characterize the uncertain information more sufficiently and accurately than intuitionistic fuzzy set. Neutrosophic set has attracted great attention of many scholars that have been extended to new types and these extensions have been used in many areas such as aggregation operators, decision making, image processing, information measures, graph and algebraic structures. Because of such a growth, we present an overview on neutrosophic set with the aim of offering a clear perspective on the different concepts, tools and trends related to their extensions. A total of 137 neutrosophic set publication records from Web of Science are analyzed. Many interesting results with regard to the annual trends, the top players in terms of country level as well as institutional level, the publishing journals, the highly cited papers, and the research landscape are yielded and explained in-depth. The results indicate that some developing economics (such as China, India, Turkey) are quite active in neutrosophic set research. Moreover, the co-authorship analysis of the country and institution, the co-citation analysis of the journal, reference and author, and the co-occurrence analysis of the keywords are presented byVOSviewer software.
This Special Issue presents original research papers that report on state-of-the-art and recent advancements in neutrosophic sets and logic in soft computing, artificial intelligence, big and small data mining, decision making problems, and practical achievements.
Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis
In medical science, diagnosis and prognosis is one of the most difficult and challenging task because of restricted subjectivity of the experts and presence of fuzziness in medical images. In observing the severity of several diseases, different professional experts may result in wrong diagnosis. In order to perform diagnosis intuitively in the medical images, different image processing methods have been explored in terms of neutrosophic theory to interpret the inherent uncertainty, ambiguity and vagueness. This paper demonstrates the use of neutrosophic theory in medical image denoising and segmentation where the performance is observed to be much better.
In this study, a new edge detection method based on Neutrosophic Set (NS) struc- ture via using maximum norm entropy (EDA-MNE) is proposed.
This book contains 37 papers by 73 renowned experts from 13 countries around the world, on following topics: neutrosophic set; neutrosophic rings; neutrosophic quadruple rings; idempotents; neutrosophic extended triplet group; hypergroup; semihypergroup; neutrosophic extended triplet group; neutrosophic extended triplet semihypergroup and hypergroup; neutrosophic offset; uninorm; neutrosophic offuninorm and offnorm; neutrosophic offconorm; implicator; prospector; n-person cooperative game; ordinary single-valued neutrosophic (co)topology; ordinary single-valued neutrosophic subspace; α-level; ordinary single-valued neutrosophic neighborhood system; ordinary single-valued neutrosophic base and subbase; fuzzy numbers; neutrosophic numbers; neutrosophic symmetric scenarios; performance indicators; financial assets; neutrosophic extended triplet group; neutrosophic quadruple numbers; refined neutrosophic numbers; refined neutrosophic quadruple numbers; multigranulation neutrosophic rough set; nondual; two universes; multiattribute group decision making; nonstandard analysis; extended nonstandard analysis; monad; binad; left monad closed to the right; right monad closed to the left; pierced binad; unpierced binad; nonstandard neutrosophic mobinad set; neutrosophic topology; nonstandard neutrosophic topology; visual tracking; neutrosophic weight; objectness; weighted multiple instance learning; neutrosophic triangular norms; residuated lattices; representable neutrosophic t-norms; De Morgan neutrosophic triples; neutrosophic residual implications; infinitely ∨-distributive; probabilistic neutrosophic hesitant fuzzy set; decision-making; Choquet integral; e-marketing; Internet of Things; neutrosophic set; multicriteria decision making techniques; uncertainty modeling; neutrosophic goal programming approach; shale gas water management system.
In real world applications, soft computing is an inspirational domain for encoding imprecision and uncertainty. Soft computing procedures integrated with medical applications can support the existing medical systems to allow solutions for unsolvable problems.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.