Download Free A New Mathematical And Philosophical Dictionary Comprising An Explantion Of The Terms And Principles Of Pure And Mixed Mathematics And Such Branches Of Natural Philosophy As Are Susceptible Of Mathematical Investigation Book in PDF and EPUB Free Download. You can read online A New Mathematical And Philosophical Dictionary Comprising An Explantion Of The Terms And Principles Of Pure And Mixed Mathematics And Such Branches Of Natural Philosophy As Are Susceptible Of Mathematical Investigation and write the review.

This publication includes an unabridged and annotated translation of two works by Johann Heinrich Lambert (1728–1777) written in the 1760s: Vorläufige Kenntnisse für die, so die Quadratur und Rectification des Circuls suchen and Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques. The translations are accompanied by a contextualised study of each of these works and provide an overview of Lambert’s contributions, showing both the background and the influence of his work. In addition, by adopting a biographical approach, it allows readers to better get to know the scientist himself. Lambert was a highly relevant scientist and polymath in his time, admired by the likes of Kant, who despite having made a wide variety of contributions to different branches of knowledge, later faded into an undeserved secondary place with respect to other scientists of the eighteenth century. In mathematics, in particular, he is famous for his research on non-Euclidean geometries, although he is likely best known for having been the first who proved the irrationality of pi. In his Mémoire, he conducted one of the first studies on hyperbolic functions, offered a surprisingly rigorous proof of the irrationality of pi, established for the first time the modern distinction between algebraic and transcendental numbers, and based on such distinction, he conjectured the transcendence of pi and therefore the impossibility of squaring the circle.
The first collection of Leibniz’s key writings on the binary system, newly translated, with many previously unpublished in any language. The polymath Gottfried Wilhelm Leibniz (1646–1716) is known for his independent invention of the calculus in 1675. Another major—although less studied—mathematical contribution by Leibniz is his invention of binary arithmetic, the representational basis for today’s digital computing. This book offers the first collection of Leibniz’s most important writings on the binary system, all newly translated by the authors with many previously unpublished in any language. Taken together, these thirty-two texts tell the story of binary as Leibniz conceived it, from his first youthful writings on the subject to the mature development and publication of the binary system. As befits a scholarly edition, Strickland and Lewis have not only returned to Leibniz’s original manuscripts in preparing their translations, but also provided full critical apparatus. In addition to extensive annotations, each text is accompanied by a detailed introductory “headnote” that explains the context and content. Additional mathematical commentaries offer readers deep dives into Leibniz’s mathematical thinking. The texts are prefaced by a lengthy and detailed introductory essay, in which Strickland and Lewis trace Leibniz’s development of binary, place it in its historical context, and chart its posthumous influence, most notably on shaping our own computer age.
Reprint of the original, first published in 1866.