Download Free A New Large Scale Global Optimization Method And Its Application To Lennard Jones Problems Book in PDF and EPUB Free Download. You can read online A New Large Scale Global Optimization Method And Its Application To Lennard Jones Problems and write the review.

Abstract: "We describe a new stochastic global optimization algorithm that is oriented towards solving large scale problems, and present the results of applying it to a class of problems in molecular chemistry. Our new algorithm incorporates some full-dimensional random sampling and local minimizations as in existing stochastic methods, but the keys to its success are two new phases that concentrate on selected small dimensional subproblems of the overall problem. These phases constitute a major portion of the computational effort of the new method, and represent a significant departure from existing stochastic methods.
On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abroad. Accurate modeling of scientific problems often leads to the formulation of large scale optimization problems involving thousands of continuous and/or discrete vari ables. Large scale optimization has seen a dramatic increase in activities in the past decade. This has been a natural consequence of new algorithmic developments and of the increased power of computers. For example, decomposition ideas proposed by G. Dantzig and P. Wolfe in the 1960's, are now implement able in distributed process ing systems, and today many optimization codes have been implemented on parallel machines.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
We have pursued all three topics described in the proposal during this research period. A large amount of effort has gone into the development of large scale global optimization methods for molecular configuration problems. We have developed new general purpose methods that combine efficient stochastic global optimization techniques with several new, more deterministic techniques that account for most of the computational effort, and the success, of the methods. We have applied our methods to Lennard-Jones problems with up to 75 atoms, to water clusters with up to 31, molecules, and polymers with up to 58 amino acids. The results appear to be the best so far by general purpose optimization methods, and appear to be leading to some interesting chemistry issues. Our research on the second topic, tensor methods, has addressed several areas. We have designed and implemented tensor methods for large sparse systems of nonlinear equations and nonlinear least squares, and have obtained excellent test results on a wide range of problems. We have also developed new tensor methods for nonlinearly constrained optimization problem, and have obtained promising theoretical and preliminary computational results. Finally, on the third topic, limited memory methods for large scale optimization, we have developed and implemented new, extremely efficient limited memory methods for bound constrained problems, and new limited memory trust regions methods, both using our-recently developed compact representations for quasi-Newton matrices. Computational test results for both methods are promising.
Optimization models based on a nonlinear systems description often possess multiple local optima. The objective of Global Optimization (GO) is to find the best possible solution of multiextremal problems. This volume illustrates the applicability of GO modeling techniques and solution strategies to real-world problems. Coverage extends to a broad range of applications, from agroecosystem management to robot design. Proposed solutions encompass a range of practical and viable methods.
Proceedings -- Parallel Computing.
This work contains refereed papers presented at an interdisciplinary scientific meeting attended by a mix of leading biochemists and computer scientists held at DIMACS in March 1995. It describes the development of a variety of new methods which are being developed for attacking the important problem of molecular structure. It is intended for graduate students and researchers in numerical analysis, molecular biology, biochemistry, computer science, engineering, and operations.
The NATO Advanced Study Institute on "Algorithms for continuous optimiza tion: the state of the art" was held September 5-18, 1993, at II Ciocco, Barga, Italy. It was attended by 75 students (among them many well known specialists in optimiza tion) from the following countries: Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Greece, Hungary, Italy, Poland, Portugal, Rumania, Spain, Turkey, UK, USA, Venezuela. The lectures were given by 17 well known specialists in the field, from Brasil, China, Germany, Italy, Portugal, Russia, Sweden, UK, USA. Solving continuous optimization problems is a fundamental task in computational mathematics for applications in areas of engineering, economics, chemistry, biology and so on. Most real problems are nonlinear and can be of quite large size. Devel oping efficient algorithms for continuous optimization has been an important field of research in the last 30 years, with much additional impetus provided in the last decade by the availability of very fast and parallel computers. Techniques, like the simplex method, that were already considered fully developed thirty years ago have been thoroughly revised and enormously improved. The aim of this ASI was to present the state of the art in this field. While not all important aspects could be covered in the fifty hours of lectures (for instance multiob jective optimization had to be skipped), we believe that most important topics were presented, many of them by scientists who greatly contributed to their development.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".