Download Free A Neutrosophic Similarity Approach To Selection Of Department For Student Transiting From Jss3 To Sss 1 Class In Nigerian Education System Book in PDF and EPUB Free Download. You can read online A Neutrosophic Similarity Approach To Selection Of Department For Student Transiting From Jss3 To Sss 1 Class In Nigerian Education System and write the review.

Single-valued neutrosophic set has been of valued importance in multi-criteria decision making problems using sim-ilarity measure. Department selection for students moving from JSS to SSS class in Nigerian Education System is such an area where decision taking has been critical as the future career of a student depends of the choice of Department in SSS class. Neutrosophic similarity measure is proposed for this department selection.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles from this issue: BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic General Finite Automata, Generalized Neutrosophic Exponential map, Implementation of Neutrosophic Function Memberships Using MATLAB Program.
Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: n-Refined Neutrosophic Modules, A Neutrosophic Approach to Digital Images, A Novel Method for Neutrosophic Assignment Problem by using Interval-Valued Trapezoidal Neutrosophic Number.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
NeutroSophication and AntiSophication are processes through which NeutroAlgebraic and AntiAlgebraic structures can be generated from any classical structures. Given any classical structure with m operations (laws and axioms) we can generate NeutroStructures and AntiStructures. In this paper, we introduce for the first time the concept of NeutroHyperGroups.
The objective of this paper is to introduce the concept of AntiRings. Several examples of AntiRings are presented. Specifically, certain types of AntiRings and their substructures are studied. It is shown that nonempty subsets of an AntiRing can be AntiRings with algebraic properties different from the algebraic properties of the parent AntiRing under the same binary operations. AntiIdeals, AntiQuotientRings and AntiRingHomomorphisms are studied with several examples. It is shown that the quotient of an AntiRing factored by an AntiIdeal can exhibit algebraic properties different from the algebraic properties of the AntiRing.