Download Free A Neural Networks Based Fault Tolerant Control Design For Aircraft Systems Book in PDF and EPUB Free Download. You can read online A Neural Networks Based Fault Tolerant Control Design For Aircraft Systems and write the review.

Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.
Written by leading experts in the field, this book provides the state-of-the-art in terms of fault tolerant control applicable to civil aircraft. The book consists of five parts and includes online material.
Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as flight performance, self protection and extended-life structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of electrical flight control system failures: oscillatory failure, runaway, and jamming. Advanced fault detection and diagnosis for linear and linear-parameter-varying systems are described. Lastly recovery strategies appropriate to remaining actuator/sensor/communications resources are developed. The authors exploit experience gained in research collaboration with academic and major industrial partners to validate advanced fault diagnosis and fault-tolerant control techniques with realistic benchmarks or real-world aeronautical and space systems. Consequently, the results presented in Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace, will be of interest in both academic and aerospatial-industrial milieux.
This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science, as well as mechanical and chemical engineering.
Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, test fault detectability and reveal redundancies that can be used to ensure fault tolerance. Case studies demonstrate the methods presented. The second edition includes new material on reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis, plus new examples and updated bibliography.
This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.
The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment. Kumar, Aditya and Viassolo, Daniel Glenn Research Center FAULT TOLERANCE; KALMAN FILTERS; THRUST CONTROL; AIRCRAFT SAFETY; FAULT DETECTION; TURBINES; FLIGHT SAFETY; REAL TIME OPERATION; SIMULATION
Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and demonstrated on industrial case systems. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems will be of interest to process and control engineers, engineering students and researchers with a control engineering background.