Download Free A Multichannel Wireless Sensor Networks Mac Protocol Book in PDF and EPUB Free Download. You can read online A Multichannel Wireless Sensor Networks Mac Protocol and write the review.

This book introduces multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs). Traditionally WSNs did not need high data rate and throughput with the shift in technology, multimedia streaming, mobility of sensing nodes and vehicular traffic has become the trend for gathering sensing data as such the need for high data rate protocol for WSNs. This book focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Firstly, the MAC sublayers for IEEE 802.15.4 and IEEE 802.11 MAC protocol were studied to aid the understanding of 802.11 and 802.15.4 CSMA/CA scheme. The performance of both have been investigated and evaluated through simulation results. Secondly the proposed MC-DCF backoff algorithm for multi-channel access based on the 802.11 DCF protocols was examined. This algorithm allows node to have access to multiple non-overlapping channels by accessing channels dynamically through channel switching after a set threshold has been met.
This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks - supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks.
A detailed review of underwater channel characteristics, Underwater Acoustic Sensor Networks investigates the fundamental aspects of underwater communication. Prominent researchers from around the world consider contemporary challenges in the development of underwater acoustic sensor networks (UW-ASNs) and introduce a cross-layer approach for effec
This book provides a systematic treatment of the theoretical foundation and algorithmic tools necessary in the design of energy-efficient algorithms and protocols in wireless body sensor networks (WBSNs). These problems addressed in the book are of both fundamental and practical importance. Specifically, the book delivers a comprehensive treatment on the following problems ranging from theoretical modeling and analysis, to practical algorithm design and optimization: energy-efficient clustering-based leader election algorithms in WBSNs; MAC protocol for duty-cycling WBSNs with concurrent traffic; multi-channel broadcast algorithms in duty-cycling WBSNs; and energy-efficient sleep scheduling algorithms in WBSNs. Target readers of the book are researchers and advanced-level engineering students interested in acquiring in-depth knowledge on the topic and on WBSNs and their applications, both from theoretical and engineering perspective.
Although IEEE 802.11a/b/g standards allow use of multiple channels, only a single channel is popularly used, due to the lack of efficient protocols that enable use of Multiple Channels. There are some papers challenging this problem. Some of them have requirements that will increase the cost, like requirement of multiple transceivers. Some others address the problem with single transceivers, but are very hard to be employed in highly mobile Ad Hoc networks due to network-wide synchronization requirements. In this Thesis, multiple channel use in a wireless network with single transceiver nodes is addressed, and attempted to be solved with a new efficient Ad Hoc network MAC protocol, which intends to remove the requirement of network-wide synchronization.
Wireless multi-hop ad hoc and sensor networks provide a promising solution to ensure ubiquitous connectivity for the Future Internet. Good network connectivity requires designing a reliable Medium Access Control (MAC) protocol, which is a challenging task in the ad hoc and sensor environments. The broadcast and shared nature of the wireless channel renders the bandwidth resources limited and expose the transmissions to relatively high collisions and loss rates. The necessity to provide guaranteed Quality of Service (QoS) to the upper layers triggered the design of conflict-free MAC protocols. The TDMA synchronization constraint is basically behind the rush of MAC protocol design based on a fixed frame size. This design shows inflexibility towards network variations and creates a network dimensioning issue that leads to a famine risk in case the network is under-dimensioned, and to a waste of resources, otherwise. Moreover, the alternative dynamic protocols provide more adaptive solutions to network topology variations at the expense of a fair access to the channel. Alongside with the efficient channel usage and the fair medium access, reducing the energy consumption represents another challenge for ad hoc and sensor networks. Solutions like node activity scheduling tend to increase the network lifetime while fulfilling the application requirements in terms of throughput and delay, for instance. Our contributions, named OSTR and S-OSTR, address the shortcomings of the medium access control protocol design in the challenging environment of wireless multi-hop ad hoc and sensor networks, respectively. For OSTR the idea consists in adopting a dynamic TDMA frame size that increases slot-by-slot according to the nodes arrival/departure to/from the network, and aiming to achieve a minimum frame size. For this end, OSTR couples three major attributes: (1) performing slot-by-slot frame size increase, (2) providing a spatial reuse scheme that favors the reuse of the same slot if possible, (3) and ensuring an on-demand frame size increase only according to the node requirements in terms of throughput. To tackle different frame sizes co-existence in the network, OSTR brings a cooperative solution that consists in fixing an appointment, a date when the frame size in the network is increased. Concerning S-OSTR, it is an amendment of OSTR for wireless sensor networks. It brings the idea of a dynamic active period, since it deploys a dynamic frame size that is built slot-by-slot according to nodes arrival to the network. S-OSTR enforces the slot-by-slot frame size increase by a node activity scheduling to prolong the inactivity period in the network, and hence prolong the overall network lifetime for wireless sensor networks. Our contributions are both based on the new dynamic TDMA frame size increase that consists in increasing the frame size slot-by-slot aiming to achieve a shorter frame size, and hence improve the channel utilization, and reduce the energy consumption. The performance analysis of OSTR and S-OSTR shows that they present good potentials to support QoS requirements, to provide energy-efficiency, to ensure fair medium access, to accommodate network topology changes and finally, to enhance robustness against scalability. The impact of this new TDMA frame size increase technique on the medium access control protocol performance is highlighted through multiple simulations of OSTR and S-OSTR. Multiple comparative studies are also handled to point out the effectiveness of this new technique and the soundness of our contributions.
Today, many wireless networks are single-channel systems. However, as the interest in wireless services increases, the contention by nodes to occupy the medium is more intense and interference worsens. One direction with the potential to increase system throughput is multi-channel systems. Multi-channel systems have been shown to reduce collisions and increase concurrency thus producing better bandwidth usage. However, the well-known hidden- and exposed-terminal problems inherited from single-channel systems remain, and a new channel selection problem is introduced. In this dissertation, Multi-channel medium access control (MAC) protocols are proposed for mobile ad hoc networks (MANETs) for nodes equipped with a single half-duplex transceiver, using more sophisticated physical layer technologies. These include code division multiple access (CDMA), orthogonal frequency division multiple access (OFDMA), and diversity. CDMA increases channel reuse, while OFDMA enables communication by multiple users in parallel. There is a challenge to using each technology in MANETs, where there is no fixed infrastructure or centralized control. CDMA suffers from the near-far problem, while OFDMA requires channel synchronization to decode the signal. As a result CDMA and OFDMA are not yet widely used. Cooperative (diversity) mechanisms provide vital information to facilitate communication set-up between source-destination node pairs and help overcome limitations of physical layer technologies in MANETs. In this dissertation, the Cooperative CDMA-based Multi-channel MAC (CCM-MAC) protocol uses CDMA to enable concurrent transmissions on each channel. The Power-controlled CDMA-based Multi-channel MAC (PCC-MAC) protocol uses transmission power control at each node and mitigates collisions of control packets on the control channel by using different sizes of the spreading factor to have different processing gains for the control signals. The Cooperative Dual-access Multi-channel MAC (CDM-MAC) protocol combines the use of OFDMA and CDMA and minimizes channel interference by a resolvable balanced incomplete block design (BIBD). In each protocol, cooperating nodes help reduce the incidence of the multi-channel hidden- and exposed-terminal and help address the near-far problem of CDMA by supplying information. Simulation results show that each of the proposed protocols achieve significantly better system performance when compared to IEEE 802.11, other multi-channel protocols, and another protocol CDMA-based.