Download Free A Multi Criteria Decision Making Method Based On The Improved Single Valued Neutrosophic Weighted Geometric Operator Book in PDF and EPUB Free Download. You can read online A Multi Criteria Decision Making Method Based On The Improved Single Valued Neutrosophic Weighted Geometric Operator and write the review.

The aggregation operator is one of the most common techniques to solve multi-criteria decision-making (MCDM) problems. The aim of this paper is to propose an MCDM method based on the improved single-valued neutrosophic weighted geometric (ISVNWG) operator. First, the defects of several existing single-valued neutrosophic weighted geometric aggregation operators in terms of producing uncertain results in some special cases are analyzed. Second, an ISVNWG operator is proposed to avoid the defects of existing operators. Further, the properties of the proposed ISVNWG operator, including idempotency, boundedness, monotonicity, and commutativity, are discussed. Finally, a single-valued neutrosophic MCDM method based on the developed ISVNWG operator is proposed to overcome the defects of existing MCDM methods based on existing operators. Application examples demonstrate that our proposed operator and corresponding MCDM method are effective and rational for avoiding uncertain results in some special cases.
The aim of this paper is to introduce some new operators for aggregating single-valued neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making (MCDM) problems.
The aim of this paper is to introduce some new operators for aggregating single-valued neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making (MCDM) problems. Single-valued neutrosophic set, as an extension and generalization of an intuitionistic fuzzy set, is a powerful tool to describe the fuzziness and uncertainty, and Muirhead mean (MM) is a well-known aggregation operator which can consider interrelationships among any number of arguments assigned by a variable vector. In order to make full use of the advantages of both, we introduce two new prioritized MM aggregation operators, such as the SVN prioritized MM (SVNPMM) and SVN prioritized dual MM (SVNPDMM) under SVN set environment. In addition, some properties of these new aggregation operators are investigated and some special cases are discussed. Furthermore, we propose a new method based on these operators for solving the MCDM problems. Finally, an illustrative example is presented to testify the efficiency and superiority of the proposed method by comparing it with the existing method.
Single-valued trapezoidal neutrosophic numbers (SVTNNs) have a strong capacity to depict uncertain, inconsistent, and incomplete information about decisionmaking problems.
Neutrosophic sets, being generalization of classic sets, fuzzy sets and intuitionistic fuzzy sets, can simultaneously represent uncertain, imprecise, incomplete, and inconsistent information existing in the real world. Neutrosophic theory has been developed in twenty first century and not much of arithmetic has been developed for this set.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
Abstract: Contributors to current issue (listed in papers' order): Mai Mohamed, Mohamed Abdel-Basset, Abdel Nasser H Zaied, Florentin Smarandache, Mridula Sarkar, Samir Dey, Tapan Kumar Roy, A. A. Salama, Hewayda ElGhawalby, Shimaa Fathi Ali, T. Chalapathi, Kiran Kumar, Mehmet Sahin, Necati Olgun, Vakkas Ulucay, Abdullah Kargin, Tanushree Mitra Basu, Shyamal Kumar Mondal, Durga Banerjee, Bibhas C. Giri, Surapati Pramanik, Partha Pratim Dey, Mona Gamal Gafar, Ibrahim El-Henawy. Papers in current issue (listed in papers' order): Neutrosophic Integer Programming Problem; Multi-Objective Structural Design Optimization using Neutrosophic Goal Programming Technique; Topological Manifold Space via Neutrosophic Crisp Set Theory; Neutrosophic Graphs of Finite Groups; A New Similarity Measure Based on Falsity Value between Single Valued Neutrosophic Sets Based on the Centroid Points of Transformed Single Valued Neutrosophic Values with Applications to Pattern Recognition; Multi-Criteria Assignment Techniques in Multi-Dimensional Neutrosophic Soft Set Theory; GRA for Multi Attribute Decision Making in Neutrosophic Cubic Set Environment; Bipolar Neutrosophic Projection Based Models for Solving Multi-Attribute Decision-Making Problems, Integrated Framework of Optimization Technique and Information Theory Measures for Modeling Neutrosophic Variables, Neutrosophic Modal Logic. Keywords: neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic applications.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This eighth volume of Collected Papers includes 75 papers comprising 973 pages on (theoretic and applied) neutrosophics, written between 2010-2022 by the author alone or in collaboration with the following 102 co-authors (alphabetically ordered) from 24 countries: Mohamed Abdel-Basset, Abduallah Gamal, Firoz Ahmad, Ahmad Yusuf Adhami, Ahmed B. Al-Nafee, Ali Hassan, Mumtaz Ali, Akbar Rezaei, Assia Bakali, Ayoub Bahnasse, Azeddine Elhassouny, Durga Banerjee, Romualdas Bausys, Mircea Boșcoianu, Traian Alexandru Buda, Bui Cong Cuong, Emilia Calefariu, Ahmet Çevik, Chang Su Kim, Victor Christianto, Dae Wan Kim, Daud Ahmad, Arindam Dey, Partha Pratim Dey, Mamouni Dhar, H. A. Elagamy, Ahmed K. Essa, Sudipta Gayen, Bibhas C. Giri, Daniela Gîfu, Noel Batista Hernández, Hojjatollah Farahani, Huda E. Khalid, Irfan Deli, Saeid Jafari, Tèmítópé Gbóláhàn Jaíyéolá, Sripati Jha, Sudan Jha, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, M. Karthika, Kawther F. Alhasan, Giruta Kazakeviciute-Januskeviciene, Qaisar Khan, Kishore Kumar P K, Prem Kumar Singh, Ranjan Kumar, Maikel Leyva-Vázquez, Mahmoud Ismail, Tahir Mahmood, Hafsa Masood Malik, Mohammad Abobala, Mai Mohamed, Gunasekaran Manogaran, Seema Mehra, Kalyan Mondal, Mohamed Talea, Mullai Murugappan, Muhammad Akram, Muhammad Aslam Malik, Muhammad Khalid Mahmood, Nivetha Martin, Durga Nagarajan, Nguyen Van Dinh, Nguyen Xuan Thao, Lewis Nkenyereya, Jagan M. Obbineni, M. Parimala, S. K. Patro, Peide Liu, Pham Hong Phong, Surapati Pramanik, Gyanendra Prasad Joshi, Quek Shio Gai, R. Radha, A.A. Salama, S. Satham Hussain, Mehmet Șahin, Said Broumi, Ganeshsree Selvachandran, Selvaraj Ganesan, Shahbaz Ali, Shouzhen Zeng, Manjeet Singh, A. Stanis Arul Mary, Dragiša Stanujkić, Yusuf Șubaș, Rui-Pu Tan, Mirela Teodorescu, Selçuk Topal, Zenonas Turskis, Vakkas Uluçay, Norberto Valcárcel Izquierdo, V. Venkateswara Rao, Volkan Duran, Ying Li, Young Bae Jun, Wadei F. Al-Omeri, Jian-qiang Wang, Lihshing Leigh Wang, Edmundas Kazimieras Zavadskas.
Fuzzy sets have experienced multiple expansions since their conception to enhance their capacity to convey complex information. Intuitionistic fuzzy sets, image fuzzy sets, q-rung orthopair fuzzy sets, and neutrosophic sets are a few of these extensions. Researchers and academics have acquired a lot of information about their theories and methods for making decisions. However, only a small number of research findings discuss how neutrosophic sets theory and their extensions (NSTEs) are used in education. The Handbook of Research on the Applications of Neutrosophic Sets Theory and Their Extensions in Education implements fresh scientific approaches to enhance the quality of decisions under neutrosophic environments, particularly within education. Covering key topics such as data modeling, educational technologies, decision making, and learning management systems, this major reference work is ideal for instructional designers, researchers, academicians, scholars, practitioners, instructors, and students.