Download Free A Mixture Model Approach To Empirical Bayes Testing And Estimation Book in PDF and EPUB Free Download. You can read online A Mixture Model Approach To Empirical Bayes Testing And Estimation and write the review.

Many modern statistical problems require making similar decisions or estimates for many different entities. For example, we may ask whether each of 10,000 genes is associated with some disease, or try to measure the degree to which each is associated with the disease. As in this example, the entities can often be divided into a vast majority of "null" objects and a small minority of interesting ones. Empirical Bayes is a useful technique for such situations, but finding the right empirical Bayes method for each problem can be difficult. Mixture models, however, provide an easy and effective way to apply empirical Bayes. This thesis motivates mixture models by analyzing a simple high-dimensional problem, and shows their practical use by applying them to detecting single nucleotide polymorphisms.
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
This book, written by two mathematicians from the University of Southern California, provides a broad introduction to the important subject of nonlinear mixture models from a Bayesian perspective. It contains background material, a brief description of Markov chain theory, as well as novel algorithms and their applications. It is self-contained and unified in presentation, which makes it ideal for use as an advanced textbook by graduate students and as a reference for independent researchers. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to go further into the subject and explore the research literature.In this book the authors present Bayesian methods of analysis for nonlinear, hierarchical mixture models, with a finite, but possibly unknown, number of components. These methods are then applied to various problems including population pharmacokinetics and gene expression analysis. In population pharmacokinetics, the nonlinear mixture model, based on previous clinical data, becomes the prior distribution for individual therapy. For gene expression data, one application included in the book is to determine which genes should be associated with the same component of the mixture (also known as a clustering problem). The book also contains examples of computer programs written in BUGS. This is the first book of its kind to cover many of the topics in this field.
This graduate-level textbook covers both the basic ideas of statistical theory, and also some of the more modern and advanced topics of Bayesian statistics, such as complete class theorems, the Stein effect, hierarchical and empirical Bayes modelling, Monte Carlo integration, and Gibbs sampling. In translating the book from the original French, the author has taken the opportunity to add and update material, and to include many problems and exercises for students.
We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.
Design and Analysis of Clinical Trials for Predictive Medicine provides statistical guidance on conducting clinical trials for predictive medicine. It covers statistical topics relevant to the main clinical research phases for developing molecular diagnostics and therapeutics-from identifying molecular biomarkers using DNA microarrays to confirming
Considered highly exotic tools as recently as the late 1990s, microarrays are now ubiquitous in biological research. Traditional statistical approaches to design and analysis were not developed to handle the high-dimensional, small sample problems posed by microarrays. In just a few short years the number of statistical papers providing approaches
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.