Robert D. Broadston
Published: 2000-09-01
Total Pages: 222
Get eBook
Current missile guidance laws are generally based on one of several forms of proportional navigation (PN). While PN laws are robust, analytically tractable, and computationally simple, they are only optimal in a narrow operating regime. Consequently, they may not optimize engagement range, time to intercept, or endgame kinetic energy. The advent of miniaturized high speed computers has made it possible to compute optimal trajectories for missiles using command mid-course guidance as well as autonomous onboard guidance. This thesis employs a simplified six degree of freedom (6DOF) flight model and a full aerodynamic 6DOF flight model to analyze the performance of both PN and optimal guidance laws in a realistic simulation environment which accounts for the effects of drag and control system time constants on the missile's performance. Analysis of the missile's kinematic boundary is used as the basis of comparison. A missile's kinematic boundary can be described as the maximum theoretical range at which it can intercept a target assuming no noise in its sensors. This analysis is immediately recognizable to the warfighter as an engagement envelope. The guidance laws are tested against non-maneuvering and maneuvering aircraft targets and against a simulation of a cruise missile threat. An application of the 6DOF model for a theater ballistic missile interceptor is presented.