Download Free A Method Of Averaging In The Theory Of Orthogonal Series And Some Problems In The Theory Of Bases Book in PDF and EPUB Free Download. You can read online A Method Of Averaging In The Theory Of Orthogonal Series And Some Problems In The Theory Of Bases and write the review.

"Investigate various forms of convergence of Fourier series in general orthonormal systems as well as certain problems in the theory of bases" -- Introduction.
Introductory concepts and some general results Independent functions and their first applications The Haar system Some results on the trigonometric and Walsh systems The Hilbert transform and some function spaces The Faber-Schauder and Franklin systems Orthogonalization and factorization theorems Theorems on the convergence of general orthogonal series General theorems on the divergence of orthogonal series Some theorems on the representation of functions by orthogonal series
This book sketches a path for newcomers into the theory of harmonic analysis on the real line. It presents a collection of both basic, well-known and some less known results that may serve as a background for future research around this topic. Many of these results are also a necessary basis for multivariate extensions. An extensive bibliography, as well as hints to open problems are included. The book can be used as a skeleton for designing certain special courses, but it is also suitable for self-study.
This is a translation of the fifth and final volume in a special cycle of publications in commemoration of the 50th anniversary of the Steklov Mathematical Institute of the Academy of Sciences in the USSR. The purpose of the special cycle was to present surveys of work on certain important trends and problems pursued at the Institute. Because the choice of the form and character of the surveys were left up to the authors, the surveys do not necessarily form a comprehensive overview, but rather represent the authors' perspectives on the important developments.
'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y se.rais point aile.' human race. It has put common sense back Jules Verne where it belongs, on!be topmost shelf next to the dusty canister labelled 'disc:arded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This volume is a selection from the 281 published papers of Joseph Leonard Walsh, former US Naval Officer and professor at University of Maryland and Harvard University. The nine broad sections are ordered following the evolution of his work. Commentaries and discussions of subsequent development are appended to most of the sections. Also included is one of Walsh's most influential works, "A closed set of normal orthogonal function," which introduced what is now known as "Walsh Functions".
This book is intended to be used with graduate courses in Banach space theory.
For some fields such as econometrics (Shore, 1980), oil prospecting (Claerbout, 1976), speech recognition (Levinson and Lieberman, 1981), satellite monitoring (Lavergnat et al., 1980), epilepsy diagnosis (Gersch and Tharp, 1977), and plasma physics (Bloomfield, 1976), there is a need to obtain an estimate of the spectral density (when it exists) in order to gain at least a crude understanding of the frequency content of time series data. An outstanding tutorial on the classical problem of spectral density estimation is given by Kay and Marple (1981). For an excellent collection of fundamental papers dealing with modern spec tral density estimation as well as an extensive bibliography on other fields of application, see Childers (1978). To devise a high-performance sample spectral density estimator, one must develop a rational basis for its construction, provide a feasible algorithm, and demonstrate its performance with respect to prescribed criteria. An algorithm is certainly feasible if it can be implemented on a computer, possesses computational efficiency (as measured by compu tational complexity analysis), and exhibits numerical stability. An estimator shows high performance if it is insensitive to violations of its underlying assumptions (i.e., robust), consistently shows excellent frequency resolutipn under realistic sample sizes and signal-to-noise power ratios, possesses a demonstrable numerical rate of convergence to the true population spectral density, and/or enjoys demonstrable asymp totic statistical properties such as consistency and efficiency.
The Plancherel formula says that the L^2 norm of the function is equal to the L^2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L^2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L^2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.​