Download Free A Measurement Of The Electron Neutrino Component In The T2k Beam Using The Tracker Detectors And The Electromagnetic Calorimeter At The Near Detector Nd280 Book in PDF and EPUB Free Download. You can read online A Measurement Of The Electron Neutrino Component In The T2k Beam Using The Tracker Detectors And The Electromagnetic Calorimeter At The Near Detector Nd280 and write the review.

This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
This thesis is devoted to the measurement of the electron neutrino appearance with the T2K experiment. T2K is a long baseline neutrino oscillation experiment that is taking data in Japan. The neutrino beam is produced by an accelerator in JPARC and neutrinos are observed in a Near Detector, ND280, before the oscillation and in the far detector, SuperKamiokande, after the oscillation. The aim of this thesis is the measurement of the intrinsic electron neutrino component of the beam with the Near Detector. The main detector used in this measurement is the ND280 TPC. The first part of the thesis describes the method developed for the particle identification in the TPCs: the PID method is based on the measurement of the truncated mean of the charge deposited by the particles crossing the gas. The PID capabilities of the TPCs have been tested analyzing the beam test data: these data have been taken at TRIUMF where we had a beam composed by electrons, muons and pions with momenta up to 400 MeV/c: the analysis of these data confirmed that the resolution on the deposited energy in the TPCs was of the order of 7%. When the first data of the T2K experiment were available, a first measurement of the electron neutrino component in the near detector has been done. To perform the analysis, a sample of neutrino interactions in ND280 was selected: this sample was mainly composed by muon neutrino interactions as the electron neutrino is expected to be 1 % of the total number of neutrinos in the beam. The selection of both, electron and muon neutrinos, allowed a first measurement of the electron neutrino component in the T2K beam.
"Starting in 1998 experiments began to show that neutrinos oscillate from one flavor to another over time, a phenomena that is explained by the existence of neutrino mass. The disappearance of muon and electron neutrinos over long distances, presumably from conversion into tau neutrinos, has been measured to great precision in many experiments. T2K is a long baseline experiment from Tokai to Kamioka in Japan that was designed to precisely measure a third type of oscillation by observing the conversion of muon neutrinos into electron neutrinos. A major background for oscillated electron neutrinos at the far detector comes from intrinsic electron neutrinos produced in the beam. To constrain this background, near detectors located 280m from the target are used to measure electron neutrino flux and cross sections. This work explains in detail the composition of the T2K beam, near and far detectors and how the components are calibrated to reduce errors. It focuses on the specific uncertainties that exist in the neutrino generators and in the beam models that affect the far detector measurement. Finally a detailed explanation of a measurement in the Pi-zero detector(P0D) of the intrinsic electron neutrino component and a constraint on the Qø distribution of the charged current quasi-elastic like component of the sample is described"--Leaf vi.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
This thesis reports the calculation of neutrino production for the T2K experiment; the most precise a priori estimate of neutrino production that has been achieved for any accelerator-based neutrino oscillation experiment to date. The production of intense neutrino beams at accelerator facilities requires exceptional understanding of chains of particle interactions initiated within extended targets. In this thesis, the calculation of neutrino production for T2K has been improved by using measurements of particle production from a T2K replica target, taken by the NA61/SHINE experiment. This enabled the reduction of the neutrino production uncertainty to the level of 5%, which will have a significant impact on neutrino oscillation and interaction measurements by T2K in the coming years. In addition to presenting the revised flux calculation methodology in an accessible format, this thesis also reports a joint T2K measurement of muon neutrino and antineutrino disappearance, and the accompanying electron neutrino and antineutrino appearance, with the updated beam constraint.