Download Free A Mathematicians Journeys Book in PDF and EPUB Free Download. You can read online A Mathematicians Journeys and write the review.

This book explores facets of Otto Neugebauer's career, his impact on the history and practice of mathematics, and the ways in which his legacy has been preserved or transformed in recent decades, looking ahead to the directions in which the study of the history of science will head in the twenty-first century. Neugebauer, more than any other scholar of recent times, shaped the way we perceive premodern science. Through his scholarship and influence on students and collaborators, he inculcated both an approach to historical research on ancient and medieval mathematics and astronomy through precise mathematical and philological study of texts, and a vision of these sciences as systems of knowledge and method that spread outward from the ancient Near Eastern civilizations, crossing cultural boundaries and circulating over a tremendous geographical expanse of the Old World from the Atlantic to India.
A colorful tour through the intriguing world of mathematics Take a grand tour of the best of modern math, its most elegant solutions, most clever discoveries, most mind-bending propositions, and most impressive personalities. Writing with a light touch while showing the real mathematics, author Peter Schumer introduces you to the history of mathematics, number theory, combinatorics, geometry, graph theory, and "recreational mathematics." Requiring only high school math and a healthy curiosity, Mathematical Journeys helps you explore all those aspects of math that mathematicians themselves find most delightful. You’ll discover brilliant, sometimes quirky and humorous tidbits like how to compute the digits of pi, the Josephus problem, mathematical amusements such as Nim and Wythoff’s game, pizza slicing, and clever twists on rolling dice.
Originally published in England and cowritten with her father, "In Code" is "a wonderfully moving story about the thrill of the mathematical chase" ("Nature") and "a paean to intellectual adventure" ("Times Educational Supplement"). A memoir in mathematics, it is all about how a girl next door became an award-winning mathematician. photo insert.
Wow! This is a powerful book that addresses a long-standing elephant in the mathematics room. Many people learning math ask ``Why is math so hard for me while everyone else understands it?'' and ``Am I good enough to succeed in math?'' In answering these questions the book shares personal stories from many now-accomplished mathematicians affirming that ``You are not alone; math is hard for everyone'' and ``Yes; you are good enough.'' Along the way the book addresses other issues such as biases and prejudices that mathematicians encounter, and it provides inspiration and emotional support for mathematicians ranging from the experienced professor to the struggling mathematics student. --Michael Dorff, MAA President This book is a remarkable collection of personal reflections on what it means to be, and to become, a mathematician. Each story reveals a unique and refreshing understanding of the barriers erected by our cultural focus on ``math is hard.'' Indeed, mathematics is hard, and so are many other things--as Stephen Kennedy points out in his cogent introduction. This collection of essays offers inspiration to students of mathematics and to mathematicians at every career stage. --Jill Pipher, AMS President This book is published in cooperation with the Mathematical Association of America.
Our objective is to publish a book that lays out the theoretical constructs and research methodologies within mathematics education that have been developed by Paul Cobb and explains the process of their development. We propose to do so by including papers in which Cobb introduced new theoretical perspectives and methodologies into the literature, each preceded by a substantive accompanying introductory paper that explains the motivation/rationale for developing the new perspectives and/or methodologies and the processes through which they were developed, and Cobb’s own retrospective comments. In this way the book provides the reader with heretofore unpublished material that lays out in considerable detail the issues and problems that Cobb has confronted in his work, that, from his viewpoint, required theoretical and methodological shifts/advances and provides insight into how he has achieved the shifts/advances. The result will be a volume that, in addition to explaining Cobb’s contributions to the field of mathematics education, also provides the reader with insight into what is involved in developing an aggressive and evolving research program. When Cobb confronts problems and issues in his work that cannot be addressed using his existing theories and frameworks, he looks to other fields for theoretical inspiration. A critical feature of Cobb’s work is that in doing so, he consciously appropriates and adapts ideas from these other fields to the purpose of supporting processes of learning and teaching mathematics; He does not simply accept the goals or motives of those fields. As a result, Cobb reconceptualizes and reframes issues and concepts so that they result in new ways of investigating, exploring, and explaining phenomena that he encounters in the practical dimensions of his work, which include working in classrooms, with teachers, and with school systems. The effect is that the field of mathematics education is altered. Other researchers have found his "new ways of looking" useful to them. And they, in turn, adapt these ideas for their own use. The complexity of many of the ideas that Cobb has introduced into the field of mathematics education can lead to a multiplicity of interpretations by practitioners and by other researchers, based on their own experiential backgrounds. Therefore, by detailing the development of Cobb’s work, including the tensions involved in coming to grips with and reconciling apparently contrasting perspectives, the book will shed additional light on the processes of reconceptualization and thus help the reader to understand the reasons, mechanisms, and outcomes of researchers’ constant pursuit of new insights.
Explores the development of the ellipse and presents mathematical concepts within a rich, historical context The Ellipse features a unique, narrative approach when presenting the development of this mathematical fixture, revealing its parallels to mankind's advancement from the Counter-Reformation to the Enlightenment. Incorporating illuminating historical background and examples, the author brings together basic concepts from geometry, algebra, trigonometry, and calculus to uncover the ellipse as the shape of a planet's orbit around the sun. The book begins with a discussion that tells the story of man's pursuit of the ellipse, from Aristarchus to Newton's successful unveiling nearly two millenniums later. The narrative draws insightful similarities between mathematical developments and the advancement of the Greeks, Romans, Medieval Europe, and Renaissance Europe. The author begins each chapter by setting the historical backdrop that is pertinent to the mathematical material that is discussed, equipping readers with the knowledge to fully grasp the presented examples and derive the ellipse as the planetary pathway. All topics are presented in both historical and mathematical contexts, and additional mathematical excursions are clearly marked so that readers have a guidepost for the materials' relevance to the development of the ellipse. The Ellipse is an excellent book for courses on the history of mathematics at the undergraduate level. It is also a fascinating reference for mathematicians, engineers, or anyone with a general interest in historical mathematics.
Although higher mathematics is beautiful, natural and interconnected, to the uninitiated it can feel like an arbitrary mass of disconnected technical definitions, symbols, theorems and methods. An intellectual gulf needs to be crossed before a true, deep appreciation of mathematics can develop. This book bridges this mathematical gap. It focuses on the process of discovery as much as the content, leading the reader to a clear, intuitive understanding of how and why mathematics exists in the way it does.The narrative does not evolve along traditional subject lines: each topic develops from its simplest, intuitive starting point; complexity develops naturally via questions and extensions. Throughout, the book includes levels of explanation, discussion and passion rarely seen in traditional textbooks. The choice of material is similarly rich, ranging from number theory and the nature of mathematical thought to quantum mechanics and the history of mathematics. It rounds off with a selection of thought-provoking and stimulating exercises for the reader.
This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.
This excellent book, written by the established author David Acheson, makes mathematics accessible to everyone. Providing an entertaining and witty overview of the subject, the text includes several fascinating puzzles, and is accompanied by numerous illustrations and sketches by world famouscartoonists. This unusual book is one of the most readable explanations of mathematics available.