Download Free A Manual Of Arithmetic Classic Reprint Book in PDF and EPUB Free Download. You can read online A Manual Of Arithmetic Classic Reprint and write the review.

Number Theory is a newly translated and revised edition of the most popular introductory textbook on the subject in Hungary. The book covers the usual topics of introductory number theory: divisibility, primes, Diophantine equations, arithmetic functions, and so on. It also introduces several more advanced topics including congruences of higher degree, algebraic number theory, combinatorial number theory, primality testing, and cryptography. The development is carefully laid out with ample illustrative examples and a treasure trove of beautiful and challenging problems. The exposition is both clear and precise. The book is suitable for both graduate and undergraduate courses with enough material to fill two or more semesters and could be used as a source for independent study and capstone projects. Freud and Gyarmati are well-known mathematicians and mathematical educators in Hungary, and the Hungarian version of this book is legendary there. The authors' personal pedagogical style as a facet of the rich Hungarian tradition shines clearly through. It will inspire and exhilarate readers.
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
The major creations and developments in mathematics from the beginnings in Babylonia and Egypt through the first few decades of the twentieth century are presented with clarity and precision in this comprehensive historical study.
This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.
The Haidao Suanjing or Sea Island Mathematical Manual, is one of the "Ten Classics" of traditional Chinese mathematics, and its contents demonstrate the high standards of theoretical and mathematical sophistication present in early Chinese surveying theory. The Haidao composed in A.D. 263 by Liu Hui, established the mathematical procedures for much of East Asian surveying activity for the next one thousand years. The contents of the Haidao also testify to the ability of the Chinese to systematize mathematics and hint at the use of proof in Chinese mathematics, a concept usually associated with Greek mathematical thought. Frank Swetz provides an annotated translation of the Haidao and an analysis of its surveying problems. In particular, he details surveying techniques and undertakes a mathematical exposition of the Chinese chong cha solution procedures. The Haidao is a testimony to the ingenuity and skill of China's early surveyors and its author, Liu Hui. This study complements and extends the findings of Swetz's previous book, Was Pythagoras Chinese?An Examination of Right Triangle Theory in Ancient China.
Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.