Stanley Faber
Published: 1961
Total Pages: 36
Get eBook
An adjustable feel system connected to the longitudinal control system of a transonic fighter airplane has been developed and has been evaluated in flight. Variable control feel including response feel is provided from the following five sources: control position, control rate, normal acceleration, pitching velocity, and pitching acceleration. This system provides a very flexible tool for more detailed study of longitudinal control feel characteristics than has previously been possible. The evaluation program for the variable-feel system yielded flight time histories which illustrate effects on the stability of airplane and control-system response modes of large amounts of response feel. These results illustrate the need for balancing the amounts of feel from normal acceleration and pitching acceleration to maintain the stability of the short-period and control-system modes. At the frequency of the short-period mode, large amounts of normal-acceleration feel cause the control system to oscillate and excite the airplane short-period mode of oscillation. At the same frequency the pitching acceleration component of feel, which leads the normal-acceleration component by 180 deg, is almost equivalent to viscous damping on the stick. However, at slightly frequencies the lag of the response-feel components increases by 90 deg or more so that a large pitching-acceleration component excites an oscillation of the control system at 4 cycles per second. These results by confirming and supplementing the conclusions of previous observers indicate that the adjustable feel system is operating properly.