Download Free A Kinetic Theory Of Gases And Liquids Classic Reprint Book in PDF and EPUB Free Download. You can read online A Kinetic Theory Of Gases And Liquids Classic Reprint and write the review.

This book introduces physics students and teachers to the historical development of the kinetic theory of gases, by providing a collection of the most important contributions by Clausius, Maxwell and Boltzmann, with introductory surveys explaining their significance. In addition, extracts from the works of Boyle, Newton, Mayer, Joule, Helmholtz, Kelvin and others show the historical context of ideas about gases, energy and irreversibility. In addition to five thematic essays connecting the classical kinetic theory with 20th century topics such as indeterminism and interatomic forces, there is an extensive international bibliography of historical commentaries on kinetic theory, thermodynamics, etc. published in the past four decades.The book will be useful to historians of science who need primary and secondary sources to be conveniently available for their own research and interpretation, along with the bibliography which makes it easier to learn what other historians have already done on this subject.
This monograph and text was designed for first-year students of physical chemistry who require further details of kinetic theory. The treatment focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. Includes numerous exercises, many partially worked out, and end-of-chapter problems. 1966 edition.
A thorough examination of kinetic theory and its successes in understanding and describing irreversible phenomena in physical systems.
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
Imparts the similarities and differences between ratified and condensed matter, classical and quantum systems as well as real and ideal gases. Presents the quasi-thermodynamic theory of gas-liquid interface and its application for density profile calculation within the van der Waals theory of surface tension. Uses inductive logic to lead readers from observation and facts to personal interpretation and from specific conclusions to general ones.
A pioneering text in its field, this comprehensive study is one of the most valuable texts and references available. The author explores the classical kinetic theory in the first four chapters, with discussions of the mechanical picture of a perfect gas, the mean free path, and the distribution of molecular velocities. Tbhe fifth chapter deals with the more accurate equations of state, or Van der Waals' equation, and later chapters examine viscosity, heat conduction, surface phenomena, and Browninan movements. The text surveys the application of quantum theory to the problem of specific heats and the contributions of kinetic theory to knowledge of electrical and magnetic properties of molecules, concluding with applications of the kinetic theory to the conduction of electricity in gases. 1934 edition.
This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1964.
The kinetic theory of gases as we know it dates to the paper of Boltzmann in 1872. The justification and context of this equation has been clarified over the past half century to the extent that it comprises one of the most complete examples of many-body analyses exhibiting the contraction from a microscopic to a mesoscopic description. The primary result is that the Boltzmann equation applies to dilute gases with short ranged interatomic forces, on space and time scales large compared to the corresponding atomic scales. Otherwise, there is no a priori limitation on the state of the system. This means it should be applicable even to systems driven very far from its eqUilibrium state. However, in spite of the physical simplicity of the Boltzmann equation, its mathematical complexity has masked its content except for states near eqUilibrium. While the latter are very important and the Boltzmann equation has been a resounding success in this case, the full potential of the Boltzmann equation to describe more general nonequilibrium states remains unfulfilled. An important exception was a study by Ikenberry and Truesdell in 1956 for a gas of Maxwell molecules undergoing shear flow. They provided a formally exact solution to the moment hierarchy that is valid for arbitrarily large shear rates. It was the first example of a fundamental description of rheology far from eqUilibrium, albeit for an unrealistic system. With rare exceptions, significant progress on nonequilibrium states was made only 20-30 years later.
Explore a Kinetic Approach to the Description of Nucleation - An Alternative to the Classical Nucleation TheoryKinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids-the kinetic nucleation theory of Ruckenstein-Narsimhan-Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate t