Download Free A Journey Through The History Of Numerical Linear Algebra Book in PDF and EPUB Free Download. You can read online A Journey Through The History Of Numerical Linear Algebra and write the review.

This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.
"The book describes numerical methods proposed for solving problems in linear algebra from antiquity to the present. Focusing on methods for solving linear systems of equations and eigenvalue problems, the book also describes the interplay between numerical methods and the computing tools available for solving these problems. Biographies of the main contributors to the field are included"--
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.
The conjugate gradient (CG) algorithm is almost always the iterative method of choice for solving linear systems with symmetric positive definite matrices. This book describes and analyzes techniques based on Gauss quadrature rules to cheaply compute bounds on norms of the error. The techniques can be used to derive reliable stopping criteria. How to compute estimates of the smallest and largest eigenvalues during CG iterations is also shown. The algorithms are illustrated by many numerical experiments, and they can be easily incorporated into existing CG codes. The book is intended for those in academia and industry who use the conjugate gradient algorithm, including the many branches of science and engineering in which symmetric linear systems have to be solved.
'This delightful book connects mathematical concepts in a dozen areas to magic tricks. Expositions of the mathematics precede description and analysis of the tricks. The expositions are too short for in-depth learning; the intent is to give sophomores a taste of the content and ideas of later mathematics courses. Each chapter features exercises on the mathematics, and students can have fun practicing the tricks.'Mathematics MagazineTeixeira and Park present over 60 different magic tricks while introducing students to high-level math areas. Readers will learn really interesting ideas that will better prepare them for future courses and help them finding areas they might want to study deeper. And as a 'side effect' students will learn amazing magic tricks, century-old secrets, and details from famous magicians and mathematicians.The material was written to quickly present key concepts in several mathematical areas in direct way. Little or no proficiency in math is assumed. In fact, students do not require any Calculus knowledge. And since chapters are almost independent from each other, this book also work as introduction to several other courses.Topics covered include mathematical proofs, probability, abstract algebra, linear algebra, mathematical computing, number theory, coding theory, geometry, topology, real analysis, numerical analysis and history of math.
This is the first book by a sociologist devoted exclusively to a general sociology of mathematics. The author provides examples of different ways of thinking about mathematics sociologically. The survey of mathematical traditions covers ancient China, the Arabic-Islamic world, India, and Europe. Following the leads of classical social theorists such as Emile Durkheim, Restivo develops the idea that mathematical concepts and ideas are collective representations, and that it is mathematical communities that create mathematics, not individual mathematicians. The implications of the sociology of mathematics, and especially of pure mathematics, for a sociology of mind are also explored. In general, the author's objective is to explore, conjecture, suggest, and stimulate in order to introduce the sociological perspective on mathematics, and to broaden and deepen the still narrow, shallow path that today carries the sociology of mathematics. This book will interest specialists in the philosophy, history, and sociology of mathematics, persons interested in mathematics education, students of science and society, and people interested in current developments in the social and cultural analysis of science and mathematics.
The Essentials of a First Linear Algebra Course and MoreLinear Algebra, Geometry and Transformation provides students with a solid geometric grasp of linear transformations. It stresses the linear case of the inverse function and rank theorems and gives a careful geometric treatment of the spectral theorem.An Engaging Treatment of the Interplay amo
'The numerical algorithms presented are written in pseudocode and based on MATLAB, a programming and numeric computing platform widely used in STEM fields. Thus, no formal training in computer science or knowledge of any specific programming language is needed to parse the algorithms. Summing up: Recommended.'CHOICEMany students come to numerical linear algebra from science and engineering seeking modern tools and an understanding of how the tools work and their limitations. Often their backgrounds and experience are extensive in applications of numerical methods but limited in abstract mathematics and matrix theory. Often enough it is limited to multivariable calculus, basic differential equations and methods of applied mathematics. This book introduces modern tools of numerical linear algebra based on this background, heavy in applied analysis but light in matrix canonical forms and their algebraic properties. Each topic is presented as algorithmic ideas and through a foundation based on mostly applied analysis. By picking a path through the book appropriate for the level, it has been used for both senior level undergraduates and beginning graduate classes with students from diverse fields and backgrounds.
Like masterpieces of art, music, and literature, great mathematical theorems are creative milestones, works of genius destined to last forever. Now William Dunham gives them the attention they deserve. Dunham places each theorem within its historical context and explores the very human and often turbulent life of the creator — from Archimedes, the absentminded theoretician whose absorption in his work often precluded eating or bathing, to Gerolamo Cardano, the sixteenth-century mathematician whose accomplishments flourished despite a bizarre array of misadventures, to the paranoid genius of modern times, Georg Cantor. He also provides step-by-step proofs for the theorems, each easily accessible to readers with no more than a knowledge of high school mathematics. A rare combination of the historical, biographical, and mathematical, Journey Through Genius is a fascinating introduction to a neglected field of human creativity. “It is mathematics presented as a series of works of art; a fascinating lingering over individual examples of ingenuity and insight. It is mathematics by lightning flash.” —Isaac Asimov
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.