Download Free A History Of Physics Phenomena Ideas And Mechanisms Book in PDF and EPUB Free Download. You can read online A History Of Physics Phenomena Ideas And Mechanisms and write the review.

The book gathers several contributions by historians of physics, philosophers of science and scientists as new essays in the history of physics ranging across the entire field, related in most instances to the works of Salvo D'Agostino (1921-2020), one of the field's most prominent scholars since the second half of the past century. A phenomenon is an observable measurable fact, including data modelling, assumptions/laws. A mechanical phenomenon is associated to equilibrium/motion. Are all mechanisms mechanisms of a phenomenon? Scholars with different backgrounds discuss mechanism/phenomena from an historical point of view. The book is also devoted to understanding of causations of disequilibrium (shock, gravitational, attraction/repulsion, inertia, entropy, etc.), including changes/interaction in the framework of irregular cases of modern physics as well. The book is an accessible avenue to understanding phenomena, ideas and mechanisms by leading authorities who offer much-needed historical insights into the field and on the relationship Physics–Mathematics. It provides an absorbing and revealing read for historians, philosophers and scientists alike.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Our understanding of nature, and in particular of physics and the laws governing it, has changed radically since the days of the ancient Greek natural philosophers. This book explains how and why these changes occurred, through landmark experiments as well as theories that - for their time - were revolutionary. The presentation covers Mechanics, Optics, Electromagnetism, Thermodynamics, Relativity Theory, Atomic Physics and Quantum Physics. The book places emphasis on ideas and on a qualitative presentation, rather than on mathematics and equations. Thus, although primarily addressed to those who are studying or have studied science, it can also be read by non-specialists. The author concludes with a discussion of the evolution and organization of universities, from ancient times until today, and of the organization and dissemination of knowledge through scientific publications and conferences.
This book covers an impressive range of topics including a description of both past and current theories of stuttering, evaluation of the explanatory power of such models, and the evidence put forward to support them.
Doing Physics makes concepts of physics easier to grasp by relating them to everyday knowledge. Addressing some of the models and metaphors that physicists use to explain the physical world, Martin H. Krieger describes the conceptual world of physics by means of analogies to economics, anthropology, theater, carpentry, mechanisms such as clockworks, and machine tool design. The interaction of elementary particles or chemical species, for example, can be related to the theory of kinship—who can marry whom is like what can interact with what. Likewise, the description of physical situations in terms of interdependent particles and fields is analogous to the design of a factory with its division of labor among specialists. For the new edition, Krieger has revised the text and added a chapter on the role of mathematics and formal models in physics. Doing Physics will be of special interest to economists, political theorists, anthropologists, and sociologists as well as philosophers of science.
A History of Chinese Science and Technology (Volumes 1, 2 & 3) presents 44 individual lectures, beginning with Ancient Chinese Science and Technology in the Process of Human Civilizations and an Overview of Chinese Science and Technology, and continuing with in-depth discussions of several issues in the History of Science and the Needham Puzzle, interspersed with topics on Astronomy, Arithmetic, Agriculture and Medicine, The Four Great Inventions, and various technological areas closely related to clothing, food, shelter and transportation. This book is the most authoritative work on the history of Chinese Science and Technology. It is the Winner of the China Book Award, the Shanghai Book Award (1st prize), and the Classical China International Publishing Project (GAPP, General Administration of Press and Publication of China) and offers an essential resource for academic researchers and non-experts alike. It originated with a series of 44 lectures presented to top Chinese leaders, which received very positive feedback. Written by top Chinese scholars in their respective fields from the Institute for the History of Natural Sciences, Chinese Academy of Sciences and many other respected Chinese organizations, the book is intended for scientists, researchers and postgraduate students working in the history of science, philosophy of science and technology, and related disciplines. Yongxiang Lu is a professor, former president and member of the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), and Vice Chairman of the National Congress of China.
This history of physics focuses on the question, "How do bodies act on one another across space?" The variety of answers illustrates the function of fundamental analogies or models in physics, as well as the role of so-called unobservable entities. Forces and Fields presents an in-depth look at the science of ancient Greece, and it examines the influence of antique philosophy on seventeenth-century thought. Additional topics embrace many elements of modern physics—the empirical basis of quantum mechanics, wave-particle duality and the uncertainty principle, and the action-at-a-distance theory of Wheeler and Feynman. The introductory chapter, in which the philosophical view is developed, can be omitted by readers more interested in history. Author Mary B. Hesse examines the use of analogies in primitive scientific explanation, particularly in the works of Aristotle, and contrasts them with latter-day theories such as those of gravitation and relativity. Hesse incorporates studies of the Pre-Socratics initiated by Francis Cornford and continued by contemporary classical historians. Her perspective sheds considerable light on the scientific thinking of antiquity, and it highlights the debt that the seventeenth-century natural philosophers owed to Greek ideas.