Download Free A History Of Mathematics Education During The Twentieth Century Book in PDF and EPUB Free Download. You can read online A History Of Mathematics Education During The Twentieth Century and write the review.

A History of Mathematics Education during the Twentieth Century describes the history of mathematics education in the United States with conceptual themes concerning philosophy, mathematics content, teacher education, pedagogy, and assessment. Each decade of the twentieth century is analyzed using historical documents, within the context of the aforementioned themes, to create a concise history of mathematical reform as it relates to history within the United States. Finally, conclusions are drawn as to which reform movements are similar and different throughout the century--depicting which aspects of reform can be seen again. Mathematics education tends to swing on a pendulum from "traditional education" including teacher-directed instruction with an emphasis on computation skills to "reform education," including student-directed instruction with an emphasis on problem solving. All decades are analyzed to see where they were on the pendulum and what aspects may have contributed to the current reform movements led by the Standards movement.
A History of Mathematics Education during the Twentieth Century describes the history of mathematics education in the United States with conceptual themes concerning philosophy, mathematics content, teacher education, pedagogy, and assessment. Each decade of the twentieth century is analyzed using historical documents, within the context of the aforementioned themes, to create a concise history of mathematical reform as it relates to history within the United States. Finally, conclusions are drawn as to which reform movements are similar and different throughout the century—depicting which aspects of reform can be seen again. Mathematics education tends to swing on a pendulum from "traditional education" including teacher-directed instruction with an emphasis on computation skills to "reform education," including student-directed instruction with an emphasis on problem solving. All decades are analyzed to see where they were on the pendulum and what aspects may have contributed to the current reform movements led by the Standards movement.
This book offers insights into the history of mathematics education, covering both the current state of the art of research and the methodology of the field. History of mathematics education is treated in the book as a part of social history. This book grew out of the presentations delivered at the International Congress on Mathematics Education in Hamburg. Modern development and growing internationalization of mathematics education made it clear that many urgent questions benefit from a historical approach. The chapters present viewpoints from the following countries: Belgium, Brazil, Cambodia, China, Cyprus, Germany, Iceland, Italy, the Netherlands, Russia,Spain and Sweden. Each chapter represents significant directions of historical studies. The book is a valuable source for every historian of mathematics education and those interested in mathematics education and its development.
This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars, not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history.
This book addresses the historiography of mathematics as it was practiced during the 19th and 20th centuries by paying special attention to the cultural contexts in which the history of mathematics was written. In the 19th century, the history of mathematics was recorded by a diverse range of people trained in various fields and driven by different motivations and aims. These backgrounds often shaped not only their writing on the history of mathematics, but, in some instances, were also influential in their subsequent reception. During the period from roughly 1880-1940, mathematics modernized in important ways, with regard to its content, its conditions for cultivation, and its identity; and the writing of the history of mathematics played into the last part in particular. Parallel to the modernization of mathematics, the history of mathematics gradually evolved into a field of research with its own journals, societies and academic positions. Reflecting both a new professional identity and changes in its primary audience, various shifts of perspective in the way the history of mathematics was and is written can still be observed to this day. Initially concentrating on major internal, universal developments in certain sub-disciplines of mathematics, the field gradually gravitated towards a focus on contexts of knowledge production involving individuals, local practices, problems, communities, and networks. The goal of this book is to link these disciplinary and methodological changes in the history of mathematics to the broader cultural contexts of its practitioners, namely the historians of mathematics during the period in question.
This work examines the main directions of research conducted on the history of mathematics education. It devotes substantial attention to research methodologies and the connections between this field and other scholarly fields. The results of a survey about academic literature on this subject are accompanied by a discussion of what has yet to be done and problems that remain unsolved. The main topics you will find in “ICME-13 Topical Survey” include: • Discussions of methodological issues in the history of mathematics education and of the relation between this field and other scholarly fields. • The history of the formation and transformation of curricula and textbooks as a reflection of trends in social-economic, cultural and scientific-technological development. • The influence of politics, ideology and economics on the development of mathematics education, from a historical perspective. • The history of the preeminent mathematics education organizations and the work of leading figures in mathematics education. • Mathematics education practices and tools and the preparation of mathematics teachers, from a historical perspective.
In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard’s mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics—in algebraic geometry and topology, complex analysis, number theory, and a host of esoteric subdisciplines that have rarely been written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, arrived at the College. He would become the first American to produce original mathematics—an ambition frowned upon in an era when professors largely limited themselves to teaching. Peirce’s successors—William Fogg Osgood and Maxime Bôcher—undertook the task of transforming the math department into a world-class research center, attracting to the faculty such luminaries as George David Birkhoff. Birkhoff produced a dazzling body of work, while training a generation of innovators—students like Marston Morse and Hassler Whitney, who forged novel pathways in topology and other areas. Influential figures from around the world soon flocked to Harvard, some overcoming great challenges to pursue their elected calling. A History in Sum elucidates the contributions of these extraordinary minds and makes clear why the history of the Harvard mathematics department is an essential part of the history of mathematics in America and beyond.
The focus of this book is the fundamental influence of the cyphering tradition on mathematics education in North American colleges, schools, and apprenticeship training classes between 1607 and 1861. It is the first book on the history of North American mathematics education to be written from that perspective. The principal data source is a set of 207 handwritten cyphering books that have never previously been subjected to careful historical analysis.
This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet