Download Free A High Energy Neutron Flux Spectra Measurement Method For The Spallation Neutron Source Book in PDF and EPUB Free Download. You can read online A High Energy Neutron Flux Spectra Measurement Method For The Spallation Neutron Source and write the review.

The goal of this work was to develop a foil activation method to measure high-energy (1--120 MeV) neutron flux spectra at the Spallation Neutron Source by researching the scientific literature, assembling an experimental apparatus, performing experiments, analyzing the results, and refining the technique based on experience. The primary motivation for this work is to provide a benchmark for the neutron source term used in target station and shielding simulations Two sets of foil irradiations were performed, one at the ARCS beamline and one at the POWGEN beamline. The gamma radiation of the foil activation products was measured with a high purity germanium gamma-ray spectrometer, and the product reaction rates during irradiation were quantified. Corrections, such as self-shielding factors, were applied to the measurements to account for particular effects. The corrected measurement data, along with calculated response functions and an initial guess spectrum, were input to the MAXED neutron spectrum unfolding computer code. MAXED uses the maximum entropy method to unfold an output spectrum that is the minimally modied guess spectrum consistent with the measurement data. The foil irradiation and subsequent analysis from the ARCS spectrum produced a reasonable neutron spectrum, which noticeably differed from the initial guess spectrum. This measurement is regarded as consistent, but yet unverified. The gamma-ray spectrum of the foil irradiation at the POWGEN beamline showed no high-energy activation. This is regarded as an experimental error, and no conclusions can be drawn about the high-energy neutron spectrum. Future foil irradiations are planned to verify and expand the neutron spectrum measurements.
Abstract: In this paper, we study a monitoring method for neutron flux for the spallation target used in an accelerator driven sub-critical (ADS) system, where a spallation target located vertically at the centre of a sub-critical core is bombarded vertically by high-energy protons from an accelerator. First, by considering the characteristics in the spatial variation of neutron flux from the spallation target, we propose a multi-point measurement technique, i.e. the spallation neutron flux should be measured at multiple vertical locations. To explain why the flux should be measured at multiple locations, we have studied neutron production from a tungsten target bombarded by a 250 MeV-proton beam with Geant4-based Monte Carlo simulations. The simulation results indicate that the neutron flux at the central location is up to three orders of magnitude higher than the flux at lower locations. Secondly, we have developed an effective technique in order to measure the spallation neutron flux with a fission chamber (FC), by establishing the relation between the fission rate measured by FC and the spallation neutron flux. Since this relation is linear for a FC, a constant calibration factor is used to derive the neutron flux from the measured fission rate. This calibration factor can be extracted from the energy spectra of spallation neutrons. Finally, we have evaluated the proposed calibration method for a FC in the environment of an ADS system. The results indicate that the proposed method functions very well.
This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.