Download Free A Handbook Of Semiconductor Physics Book in PDF and EPUB Free Download. You can read online A Handbook Of Semiconductor Physics and write the review.

Aiming to bridge the gap in understanding between professional electrochemists and hard-core semiconductor physicists and material scientists, this book examines the science and technology of semiconductor electrode-positioning. Summarizing state-of-the-art information concerning a wide variety of semiconductors, it reviews fundamental electrodeposition concepts and terminology.
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
A detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced.
"A Handbook of Semiconductor Physics" serves as an indispensable guide tailored for absolute beginners seeking a comprehensive understanding of semiconductor physics. Written with clarity and precision, this handbook demystifies complex concepts and equations, making them accessible and engaging for readers at all levels. From fundamental principles to advanced topics, each chapter provides clear explanations, practical examples, and insightful illustrations, facilitating a smooth learning curve. Whether you're a student, researcher, or enthusiast, this book equips you with the essential knowledge and tools to navigate the fascinating world of semiconductor physics with confidence and curiosity.
This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor-device parameters.
A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.
Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to stud
The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.
The three volumes of this handbook treat the fundamentals, technology and nanotechnology of nitride semiconductors with an extraordinary clarity and depth. They present all the necessary basics of semiconductor and device physics and engineering together with an extensive reference section. Volume 1 deals with the properties and growth of GaN. The deposition methods considered are: hydride VPE, organometallic CVD, MBE, and liquid/high pressure growth. Additionally, extended defects and their electrical nature, point defects, and doping are reviewed.
In its original form, this widely acclaimed primer on the fundamentals of quantized semiconductor structures was published as an introductory chapter in Raymond Dingle's edited volume (24) of Semiconductors and Semimetals. Having already been praised by reviewers for its excellent coverage, this material is now available in an updated and expanded "student edition." This work promises to become a standard reference in the field. It covers the basics of electronic states as well as the fundamentals of optical interactions and quantum transport in two-dimensional quantized systems. This revised student edition also includes entirely new sections discussing applications and one-dimensional and zero-dimensional systems. - Available for the first time in a new, expanded version - Provides a concise introduction to the fundamentals and fascinating applications of quantized semiconductor structures