Download Free A Handbook Of Mathematical Discourse Book in PDF and EPUB Free Download. You can read online A Handbook Of Mathematical Discourse and write the review.

Describes five practices for productive mathematics discussions, including anticipating, monitoring, selecting, sequencing, and connecting.
Presents portraits of teaching by secondary school teachers who have closely observed classroom communication, conversation and discourse.
Standardized tests have been selected as a key assessment factor in expanding the academic achievement of the national student population. However, these tests position immigrant students at the risk of academic failure, leading education experts to search for new strategies and teaching models. The Handbook of Research on Assessment Practices and Pedagogical Models for Immigrant Students is a critical research publication that focuses on research-based pedagogical practices for teaching immigrant students. Edited by a prominent IGI Global editor, this book examines the latest professional development models and assessment practices of English learners (ELs). Covering essential topics such as second language acquisition (SLA), classroom management, teacher education, refugee resettlement programs, and more, this publication is a valuable resource for academicians, professionals, researchers, administrators, faculty, and classroom teachers as the social and academic needs of English language learners continue to present a challenge for many schools and teachers.
"This book is a game changer! Strengths-Based Teaching and Learning in Mathematics: 5 Teaching Turnarounds for Grades K- 6 goes beyond simply providing information by sharing a pathway for changing practice. . . Focusing on our students’ strengths should be routine and can be lost in the day-to-day teaching demands. A teacher using these approaches can change the trajectory of students’ lives forever. All teachers need this resource! Connie S. Schrock Emporia State University National Council of Supervisors of Mathematics President, 2017-2019 NEW COVID RESOURCES ADDED: A Parent’s Toolkit to Strengths-Based Learning in Math is now available on the book’s companion website to support families engaged in math learning at home. This toolkit provides a variety of home-based activities and games for families to engage in together. Your game plan for unlocking mathematics by focusing on students’ strengths. We often evaluate student thinking and their work from a deficit point of view, particularly in mathematics, where many teachers have been taught that their role is to diagnose and eradicate students’ misconceptions. But what if instead of focusing on what students don’t know or haven’t mastered, we identify their mathematical strengths and build next instructional steps on students’ points of power? Beth McCord Kobett and Karen S. Karp answer this question and others by highlighting five key teaching turnarounds for improving students’ mathematics learning: identify teaching strengths, discover and leverage students’ strengths, design instruction from a strengths-based perspective, help students identify their points of power, and promote strengths in the school community and at home. Each chapter provides opportunities to stop and consider current practice, reflect, and transfer practice while also sharing · Downloadable resources, activities, and tools · Examples of student work within Grades K–6 · Real teachers’ notes and reflections for discussion It’s time to turn around our approach to mathematics instruction, end deficit thinking, and nurture each student’s mathematical strengths by emphasizing what makes them each unique and powerful.
Math coaches wear many hats. You think on your feet and have to invent, react, and respond—often without time to prepare—in a myriad of professional contexts. What’s your go-to resource for support? Plan, focus, and lead: Your toolkit for inspiring math teachers Meet Everything You Need For Mathematics Coaching: Tools, Plans, and a Process That Works for Any Instructional Leader. This one-stop, comprehensive toolkit for improving mathematics instruction and learning is designed for busy math coaches and teacher leaders who often have to rely on their own competencies. Using the Leading for Mathematical Proficiency Framework, the authors position student outcomes as the focus of all professional work and connect the Eight Mathematical Practices for students with NCTM’s Eight Effective Teaching Practices to help you guide teachers toward growing mathematics proficiency in their classrooms. This hands-on resource details critical coaching and teaching actions, and offers nearly a hundred tools for: Shifting classroom practice in a way that leads to student math proficiency and understanding of mathematical concepts. Honing in on key areas, including content knowledge and worthwhile tasks, student engagement, questioning and discourse, analysis of student work, formative assessment, support for emergent language learners and students with special needs, and more. Navigating a coaching conversation. Planning and facilitating professional learning communities. Finding a focus for professional development or a learning cycle. Making connections between professional learning activities, teaching, and student learning. Using the coaching cycle—plan, gather data, reflect—to build trust and rapport with teachers. With examples from the field, a comprehensive list of resources for effective coaching, and a plethora of tools you can download and share with teachers, this toolkit is your must-have guide to designing a professional learning plan and leading with clarity and purpose.
For the past decade reform efforts have placed importance on all students being able to participate in collaborative and productive mathematical discourse as an essential component for their learning of mathematics with deep conceptual understandings. In this book our intent is to support mathematics education researchers, teacher educators, teachers and policy makers in providing positive solutions to the enduring challenge in mathematics education of enabling all participants including diverse students to equitably access mathematical discourse. By diverse learners we mean learners who are minoritized in terms of gender, disability, or/and social, cultural, ethnic, racial or language backgrounds. We aim to increase understanding about what it means to imagine, design and engage with policy and practice which enhance opportunities for all students to participate in productive mathematical discourse. In widening the lens across policy and practice settings we recognize the interplay between the many complex factors that influence student participation in mathematics. The various chapters tell practical stories of equitable practices for diverse learners within a range of different contexts. Different research perspectives, empirical traditions, and conceptual foci are presented in each chapter. Various aspects of diversity are raised, issues of concern are engaged with, and at times conventional wisdom challenged as the authors provide insights as to how educators may address issues of equitable access of minoritized learners to the mathematical discourse within settings across early primary through to high school, and situated in schools or in family and community settings.
Mathematical science communication, as well as the field of science communication in general, has gained momentum over the last few decades. Mathematical science communication aims to inform the public about contemporary research, enhance factual and methodological knowledge, and foster a greater interest and support for the science of mathematics. This enables the public to apply it to their practical life, and to decision-making on a greater scale. These objectives are met in the various formats and media through which mathematical science communication is brought to the public.The first 13 chapters of the book consist of best-practice examples from the areas of informal math education, museums and exhibitions, and the arts. The final 5 chapters discuss the structural aspects of mathematical science communication and contribute to the basis for its theoretical framework.
This comprehensive volume provides teachers, researchers and education professionals with cutting edge knowledge developed in the last decades by the educational, behavioural and neurosciences, integrating cognitive, developmental and socioeconomic approaches to deal with the problems children face in learning mathematics. The neurocognitive mechanisms and the cognitive processes underlying acquisition of arithmetic abilities and their significance for education have been the subject of intense research in the last few decades, but the most part of this research has been conducted in non-applied settings and there’s still a deep discrepancy between the level of scientific knowledge and its implementation into actual educational settings. Now it’s time to bring the results from the laboratory to the classroom. Apart from bringing the theoretical discussions to educational settings, the volume presents a wide range of methods for early detection of children with risks in mathematics learning and strategies to develop effective interventions based on innovative cognitive test instruments. It also provides insights to translate research knowledge into public policies in order to address socioeconomic issues. And it does so from an international perspective, dedicating a whole section to the cultural diversity of mathematics learning difficulties in different parts of the world. All of this makes the International Handbook of Mathematical Learning Difficulties an essential tool for those involved in the daily struggle to prepare the future generations to succeed in the global knowledge society.
This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.