Download Free A Guide To Teaching Elementary Science Book in PDF and EPUB Free Download. You can read online A Guide To Teaching Elementary Science and write the review.

Nationally and internationally, educators now understand the critical importance of STEM subjects—science, technology, engineering, and mathematics. Today, the job of the classroom science teacher demands finding effective ways to meet current curricula standards and prepare students for a future in which a working knowledge of science and technology will dominate. But standards and goals don’t mean a thing unless we: • grab students’ attention; • capture and deepen children’s natural curiosity; • create an exciting learning environment that engages the learner; and • make science come alive inside and outside the classroom setting. A Guide to Teaching Elementary Science: Ten Easy Steps gives teachers, at all stages of classroom experience, exactly what the title implies. Written by lifelong educator Yvette Greenspan, this book is designed for busy classroom teachers who face tough conditions, from overcrowded classrooms to shrinking budgets, and too often end up anxious and overwhelmed by the challenges ahead and their desire for an excellent science program. This book: • helps teachers develop curricula compatible with the Next Generation Science Standards and the Common Core Standards; • provides easy-to-implement steps for setting up a science classroom, plus strategies for using all available resources to assemble needed teaching materials; • offers detailed sample lesson plans in each STEM subject, adaptable to age and ability and designed to embrace the needs of all learners; and • presents bonus information about organizing field trips and managing science fairs. Without question, effective science curricula can help students develop critical thinking skills and a lifelong passion for science. Yvette Greenspan received her doctorate degree in science education and has developed science curriculum at all levels. A career spent in teaching elementary students in an urban community, she now instructs college students, sharing her love for the teaching and learning of science. She considers it essential to encourage today’s students to be active learners and to concentrate on STEM topics that will help prepare them for the real world.
"This book comes at just the right time, as teachers are being encouraged to re-examine current approaches to science instruction." -Lynn Rankin, Director, Institute for Inquiry, Exploratorium "Easy to read and comprehend with very explicit examples, it will be foundational for classroom teachers as they journey from novice teacher of science to expert." -Jo Anne Vasquez, Ph.D., Past President of the National Science Teachers Association "Teaching Science for Understanding is a comprehensive, exquisitely written guide and well-illustrated resource for high quality teaching and learning of inquiry-based science." -Hubert M. Dyasi, Ph.D., Professor of Science, City College and City University of New York Even though there is an unending supply of science textbooks, kits, and other resources, the practice of teaching science is more challenging than simply setting up an experiment. In Teaching Science for Understanding in Elementary and Middle Schools, Wynne Harlen focuses on why developing understanding is essential in science education and how best to engage students in activities that deepen their curiosity about the world and promote enjoyment of science. Teaching Science for Understanding in Elementary and Middle Schools centers on how to build on the ideas your students already have to cultivate the thinking and skills necessary for developing an understanding of the scientific aspects of the world, including: helping students develop and use the skills of investigation drawing conclusions from data through analyzing, interpreting, and explaining creating classrooms that encourage students to explain and justify their thinking asking productive questions to support students' understanding. Through classroom vignettes, examples, and practical suggestions at the end of each chapter, Wynne provides a compelling vision of what can be achieved through science education...and strategies that you can implement in your classroom right now.
If you like the popular?Teaching Science Through Trade Books? columns in NSTA?s journal Science and Children, or if you?ve become enamored of the award-winning Picture-Perfect Science Lessons series, you?ll love this new collection. It?s based on the same time-saving concept: By using children?s books to pique students? interest, you can combine science teaching with reading instruction in an engaging and effective way.
As teachers and parents, we often hear that children are the best scientists. Great science teachers tune in to children’s interests and observations to create engaging and effective lessons. This focus on the innate curiosity of children, or humans overall is celebrated and used to justify and support efforts around STEM teaching and learning. Yet, when we discuss elementary school teachers, we often hear many inside and outside the classroom report that these teachers dislike, fear, and feel uncomfortable with science. This is exactly the opposite approach from what is universally recommended by science education scholars. This practical textbook meets the immediate, contextual needs of future and current elementary teachers by using an assets-based approach to science teaching, showing how to create inquiry-based lessons, differentiate instruction and lesson design based on children’s developmental ages and needs, and providing easy-to-use tools to advocate for scientific teaching and learning guided by the Next Generation Science Standards (NGSS).
What do aspiring and practicing elementary science teacher education faculty need to know as they plan and carry out instruction for future elementary science teachers? This scholarly and practical guide for science teacher educators outlines the theory, principles, and strategies needed, and provides classroom examples anchored to those principles. The theoretical and empirical foundations are supported by scholarship in the field, and the practical examples are derived from activities, lessons, and units field-tested in the authors’ elementary science methods courses. Designing and Teaching the Elementary Science Methods Course is grounded in the theoretical framework of pedagogical content knowledge (PCK), which describes how teachers transform subject matter knowledge into viable instruction in their discipline. Chapters on science methods students as learners, the science methods course curriculum, instructional strategies, methods course assessment, and the field experience help readers develop their PCK for teaching prospective elementary science teachers. "Activities that Work" and "Tools for Teaching the Methods Course" provide useful examples for putting this knowledge into action in the elementary science methods course.
Teaching Science to Culturally and Linguistically Diverse Elementary Students helps K-8 teachers implement culturally relevant instructional strategies to ensure that all students, regardless of race, ethnicity, or socioeconomic class, can do science, like science, and become scientists if they choose. In America's increasingly diverse classrooms, science is not always presented in a way that is meaningful to all students. With this in mind, this book outlines 8 culturally relevant strategies for teaching science to help ensure all students have access to inquiry-based, interactive, and experiential science learning. Written to encourage inclusive practices, the book shows how to teach science using students' experiences, how to integrate science and literacy and how to use alternative methods to assess students' understanding of science. Includes 8 culturally relevant strategies for teaching science to all students-outlines inclusive practices that ensure all students have access to inquiry-based, interactive, and experiential science learning. Emphasizes family connections and teaching science to and through students' experiences-connects science activities and content to students' lives at home and includes a chapter on fostering family connections and family connections icons throughout the book. Offers examples of science and literacy connections-models how teachers can integrate science and literacy to enhance students' understanding of science. Includes case studies with reflection questions in each chapter-provides examples of culturally relevant science teaching in the K-8 classroom for teachers to analyze and discuss. Offers step-by-step descriptions of four science instructional models, including Concept Attainment, Concept Formation, Group Investigation and 5 Es Model. Devotes a complete chapter to alternative assessment with diverse learners-provides a variety of examples and assessment methods to help teachers gauge students' understanding of science. Presents book study questions-helps teachers discuss the book professionally and apply the information to their current science activities.
Why is science hard to teach? What types of scientific investigation can you use in the primary classroom? Touching on current curriculum concerns and the wider challenges of developing high-quality science education, this book is an indispensable overview of important areas of teaching every aspiring primary school teacher needs to understand including: the role of science in the curriculum, communication and literacy in science teaching, science outside the classroom, transitional issues and assessment. Key features of this second edition include: • A new chapter on science in the Early Years • A new practical chapter on how to work scientifically • Master’s-level ‘critical reading’ boxes in every chapter linking topics to relevant specialist literature • Expanded coverage of creativity, and link science to numeracy and computing This is essential reading for all students studying primary science on initial teacher education courses, including undergraduate (BEd, BA with QTS), postgraduate (PGCE, School Direct, SCITT), and also NQTs. Mick Dunne is Senior Lecturer in Science Education at Manchester Metropolitan University Alan Peacock is Honorary Research Fellow at the University of Exeter
Teaching Science in Elementary and Middle School offers in-depth information about the fundamental features of project-based science and strategies for implementing the approach. In project-based science classrooms students investigate, use technology, develop artifacts, collaborate, and make products to show what they have learned. Paralleling what scientists do, project-based science represents the essence of inquiry and the nature of science. Because project-based science is a method aligned with what is known about how to help all children learn science, it not only helps students learn science more thoroughly and deeply, it also helps them experience the joy of doing science. Project-based science embodies the principles in A Framework for K-12 Science Education and the Next Generation Science Standards. Blending principles of learning and motivation with practical teaching ideas, this text shows how project-based learning is related to ideas in the Framework and provides concrete strategies for meeting its goals. Features include long-term, interdisciplinary, student-centered lessons; scenarios; learning activities, and "Connecting to Framework for K–12 Science Education" textboxes. More concise than previous editions, the Fourth Edition offers a wealth of supplementary material on a new Companion Website, including many videos showing a teacher and class in a project environment.