Download Free A Guide To Seismic Data Acquisition Book in PDF and EPUB Free Download. You can read online A Guide To Seismic Data Acquisition and write the review.

This illustration-rich book explains seismic data acquisition operations from a fundamental and practical standpoint, ranging from land to marine 2D methods to 3D seismic methods. Helpful to geologists, field crews, exploration managers, petroleum engineers, and geophysicists, each chapter concludes with exercises on field data recording problems.
This book introduces simultaneous source technology and helps those who practice it succeed. Although the book does not include all developments, which would have en­tailed a much longer treatise, this work is written through the lens of decades of experiences and allows readers to understand the development of independent simultaneous sourcing. The relationships between data acquisition and data processing are discussed because never before have they been so intertwined as in this area. In addition to describing the underlying technologies, this book also is a user-guide which discusses survey design and acquisition and decribes the sensitivities of the processing algorithms which can allow simultaneous source technology to succeed. The audience for this book includes acquisition and pro­cessing geophysicists who will work with these data as well as those who require only an overview of the state of the art; and, even though they may not need the full technical details, they may want to know the limitations and advantages of using simultaneous sources.
This book deals with the optimization technique of seismic data acquisition parameter. Each aspect of acquisition parameter has been discussed in detail. Chapter-one deals with the general technique of seismic data acquisition and common meaning of some of the terms being used in exploration seismic in on land and offshore areas, particularly about characteristics of source & receiver and acquisition techniques. Chapter-two deals with the optimization of Geometrical Parameters i.e. far-offset distance, near-offset distance, group interval, effective array length, foldage, line orientation and line length. Chapter-three deals with the optimization of Source Parameters. Basic goal of optimization is to have required resolution and signal to noise ratio in the acquired data. For explosive source, shot hole depth, charge size and lithology of the medium surrounding the charge are three parameters which decide the source signature. First of all records with different depths below the weathering layer with equal charge size is taken. Signal to noise ratio and peak frequency of the signal at the main zone of interest is computed. Amplitude spectra of different traces at main zone of interest are also compared for all the records. Record giving highest peak frequency and signal to noise ratio corresponds to optimum depth. Now keeping this depth fixed, charge size is varied and record are taken. Again signal to noise ratio, peak frequency and amplitude spectra are compared and a suitable one is selected on the basis of frequency content and signal to noise ratio. In the case of land airgun, Number of airgun, number of pops and air gun patterns are the main parameters, which decide signal to noise ratio. In the case of Vibroseis, sweep length, end frequencies of the sweep and Vibroseis pattern are the main parameters to be optimized in the field. In marine work marine air gun is the widely used marine seismic source. Peak to peak amplitude, primary to bubble ratio (PBR) and bandwidth of the amplitude spectrum are the deciding parameters for selection of source.Chapter-four deals with the Source/Receiver Array Parameters. Effective array length, element's weighting and spacing are the parameters to be optimized on the basis of desired seismic resolution as well as degree of attenuation of coherent noise. Effectiveness of the array is examined by fold-back experiment and f-k diagram.Chapter-five deals with the Recording System & Quality Control. Silent features have been discussed here, which are essential to be adhered in the field so that objective of the survey is achieved.
Written for practicing geophysicists, “Land Seismic Case Studies for Near-Surface Modeling and Subsurface Imaging” is a comprehensive guide to understanding and interpreting seismic data. The culmination of land seismic data acquisition and processing projects conducted by the author over the last two decades, this book contains more than nearly 800 figures from worldwide case studies—conducted in both 2D and 3D. Beginning with Chapter 1 on seismic characterization of the near-surface, Chapter 2 presents near-surface modeling by traveltime and full-wave inversion, Chapter 3 presents near-surface modeling by imaging, and then Chapter 4 includes detailed case studies for near-surface modeling. Chapter 5 reviews single- and multichannel signal processing of land seismic data with the key objective of removing surface waves and guided waves that are characterized as coherent linear noise. Uncommon seismic data acquisition methods, including large-offset acquisition in thrust belts to capture the large-amplitude supercritical reflections, swath-line acquisition, and joint PP and SH- SH seismic imaging are highlighted in Chapter 6, and Chapter 7 presents image-based rms velocity estimation and discusses the problem of velocity uncertainty. The final two chapters focus exclusively on case studies: 2D in Chapter 8 and 3D in Chapter 9. An outstanding teaching tool, this book includes analysis workflows containing processing steps designed to solve specific problems. Essential for anyone involved in acquisition, processing, and inversion of seismic data, this volume will become the definitive reference for understanding how the variables in seismic acquisition are directly reflected in the data.
Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.
This book covers in detail the entire workflow for quantitative seismic interpretation of subsurface modeling and characterization. It focusses on each step of the geo-modeling workflow starting from data preconditioning and wavelet extraction, which is the basis for the reservoir geophysics described and introduced in the following chapters. This book allows the reader to get a comprehensive insight of the most common and advanced workflows. It aims at graduate students related to energy (hydrocarbons), CO2 geological storage, and near surface characterization as well as professionals in these industries. The reader benefits from the strong and coherent theoretical background of the book, which is accompanied with real case examples.
In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields.
This new text provides comprehensive coverage of exploration seismology and elements of geology pertinent to exploration geology. It is profusely illustrated and contains workshops to aid understanding. Several appendices explain the math, equations, and answers of the selected exercise questions.