Download Free A Graphic Apology For Symmetry And Implicitness Book in PDF and EPUB Free Download. You can read online A Graphic Apology For Symmetry And Implicitness and write the review.

This book brings into focus the contrast between explicit and implicit algorithmic descriptions of objects and presents a new geometric language for the study of combinatorial and logical problems in complexity theory. These themes are considered in a variety of settings, sometimes crossing traditional boundaries. Special emphasis is given to moderate complexity - exponential or polynomial - but objects with multi-exponential complexity also fit in. Among the items under consideration are graphs, formal proofs, languages, automata, groups, circuits, some connections with geometry of metric spaces, and complexity classes (P, NP, co-NP).
This book constitutes the refereed proceedings of the 25th International Symposium on Mathematical Foundations of Computer Science, MFCS 2000, held in Bratislava/Slovakia in August/September 2000. The 57 revised full papers presented together with eight invited papers were carefully reviewed and selected from a total of 147 submissions. The book gives an excellent overview on current research in theoretical informatics. All relevant foundational issues, from mathematical logics as well as from discrete mathematics are covered. Anybody interested in theoretical computer science or the theory of computing will benefit from this book.
This book constitutes the thoroughly refereed post-proceedings of the 8th International Workshop on the Design, Specification, and Verification of Interactive Systems, DSV-IS 2001, held in Glasgow, Scotland, UK, in June 2001. The 12 revised full papers presented have gone through two rounds of reviewing, selection, and revision. The book offers topical sections on mobile interface design, context-sensitive interfaces, supervision and control systems, temporal and stochastic issues, and new perspectives.
This book deals with fractal geometries that have features similar to ones of ordinary Euclidean spaces, while at the same time being quite different from Euclidean spaces.. A basic example of this feature considered is the presence of Sobolev or Poincaré inequalities, concerning the relationship between the average behavior of a function and the average behavior of its small-scale oscillations. Remarkable results in the last few years through Bourdon-Pajot and Laakso have shown that there is much more in the way of geometries like this than have been realized, only examples related to nilpotent Lie groups and Carnot metrics were known previously. On the other had, 'typical' fractals that might be seen in pictures do not have these same kinds of features. This text examines these topics in detail and will interest graduate students as well as researchers in mathematics and various aspects of geometry and analysis.
Written by a leading scholar in mathematics, this monograph discusses the Radon transform, a field that has wide ranging applications to X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography. In this book, Ehrenpreis focuses on recent research and highlights the strong relationship between high-level pure mathematics and applications of the Radon transform to areas such as medical imaging. The first part of the book discusses parametric and nonparametric Radon transforms, Harmonic Functions and Radon transform on Algebraic Varieties, nonlinear Radon and Fourier transforms, Radon transform on groups, and Radon transform as the interrelation of geometry and analysis. The later parts discuss the extension of solutions of differential equations, Periods of Eisenstein and Poincaré, and some problems of integral geometry arising in tomography. Examples and proofs are provided throughout the book to aid the reader's understanding. This is the latest title in the Oxford Mathematical Monographs, which includes texts and monographs covering many topics of current research interest in pure and applied mathematics. Other titles include: Carbone and Semmes: A graphic apology for symmetry and implicitness; Higson and Roe: Analytic K-Homology; Iwaniec and Martin: Geometric Function Theory and Nonlinear Analysis; Lyons and Qian: System Control and Rough Paths. Also new in paperback Johnson and Lapidus: The Feynman Integral and Feynman's Operational Calculus; Donaldson and Kronheimer: The geometry of four-manifolds.
Aimed at graduate students and researchers in mathematics, this book takes homological themes, such as Koszul complexes and their generalizations, and shows how these can be used to clarify certain problems in selected parts of algebra, as well as their success in solving a number of them.
This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.
The 1995 work of Wiles and Taylor-Wiles opened up a whole new technique in algebraic number theory and, a decade on, the waves caused by this incredibly important work are still being felt. This book, authored by a leading researcher, describes the striking applications that have been found for this technique. In the book, the deformation theoretic techniques of Wiles-Taylor are first generalized to Hilbert modular forms (following Fujiwara's treatment), and some applications found by the author are then discussed. With many exercises and open questions given, this text is ideal for researchers and graduate students entering this research area.
The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heatequation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, andother fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.
Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.