Download Free A Global Optimization Algorithm Using Stochastic Differential Equations Book in PDF and EPUB Free Download. You can read online A Global Optimization Algorithm Using Stochastic Differential Equations and write the review.

SIGMA is a set of FORTRAN subprograms for solving the global optimization problem, which implement a method founded on the numerical solution of a Cauchy problem for stochastic differential equations inspired by quantum physics. This paper gives a detailed description of the method as implemented in SIGMA, and reports on the numerical tests which have been performed while the SIGMA package is described in the accompanying Algorithm. The main conclusions are that SIGMA performs very well on several hard test problems; unfortunately given the state of the mathematical software for global optimization it has not been possible to make conclusive comparisons with other packages. Keywords: Algorithms, Theory, Verification, Global Optimization, Stochastic Differential Equations.
A new approach is presented to the problem of finding a global (i.e. absolute) minimizer of a function of several real variables, and some of its mathematical properties are investigated. The approach is based on the idea of following the solution trajectories of a stochastic differential equation inspired by statistical mechanics. This document also describes a complete algorithm (SIGMA) based on the above approach, which looks for a point of global minimum by monitoring the values of the function to be minimized along a number of simultaneously-evolving trajectories generated by a new (stochastic) scheme for the numerical integration of the stochastic differential equation. Finally described is the software package SIGMA which implements the above algorithm in a portable subset of the A.N.S. FORTRAN IV language, a number of carefully selected test problems designed for testing the software for global optimization, and the results of testing SIGMA on the above problems, and on a problem of theoretical chemistry. The main conclusion is that the performance of SIGMA is very good, even on some very hard problems. Additional keywords: Numerical Analysis; Mathematical software; Algorithm analysis, certification and testing. (Author).
Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller
Global Optimization has emerged as one of the most exciting new areas of mathematical programming. Global optimization has received a wide attraction from many fields in the past few years, due to the success of new algorithms for addressing previously intractable problems from diverse areas such as computational chemistry and biology, biomedicine, structural optimization, computer sciences, operations research, economics, and engineering design and control. This book contains refereed invited papers submitted at the 4th international confer ence on Frontiers in Global Optimization held at Santorini, Greece during June 8-12, 2003. Santorini is one of the few sites of Greece, with wild beauty created by the explosion of a volcano which is in the middle of the gulf of the island. The mystic landscape with its numerous mult-extrema, was an inspiring location particularly for researchers working on global optimization. The three previous conferences on "Recent Advances in Global Opti mization", "State-of-the-Art in Global Optimization", and "Optimization in Computational Chemistry and Molecular Biology: Local and Global approaches" took place at Princeton University in 1991, 1995, and 1999, respectively. The papers in this volume focus on de terministic methods for global optimization, stochastic methods for global optimization, distributed computing methods in global optimization, and applications of global optimiza tion in several branches of applied science and engineering, computer science, computational chemistry, structural biology, and bio-informatics.
The paper gives a detailed description of a FORTRAN IV program based on a new method of finding a global (or absolute) minimizer of a function of N real variables, i.e. the point x in N-dimensional space (or possibly one of the points) such that not only the function increases if one moves away from x in any direction, (local or relative minimum), but also such that no other point exists where f has a lower value. The method, which was first proposed by the present authors in a paper which is to appear in the Journal of Optimization Theory and Applications, is based on ideas from statistical mechanics, and looks for a point of global minimum by following the solution trajectories of a stochastic differential equation representing the motion of particle (in N-space) under the action of a potential field and of a random perturbing force. The tests were performed by running the program on an extensive set of carefully selected tests were performed by running the program on an extensive set of carefully selected test problems of varying difficulty, and the performance was remarkably successful, even on very hard problems (e.g. problems with a single point of global minimum and up to about 10 to the 10th power points of non-global minimum). Keywords include: Algorithms; Global Optimization, Stochastic Differential Equations.
This self-contained monograph presents a new stochastic approach to global optimization problems arising in a variety of disciplines including mathematics, operations research, engineering, and economics. The volume deals with constrained and unconstrained problems and puts a special emphasis on large scale problems. It also introduces a new unified concept for unconstrained, constrained, vector, and stochastic global optimization problems. All methods presented are illustrated by various examples. Practical numerical algorithms are given and analyzed in detail. The topics presented include the randomized curve of steepest descent, the randomized curve of dominated points, the semi-implicit Euler method, the penalty approach, and active set strategies. The optimal decoding of block codes in digital communications is worked out as a case study and shows the potential and high practical relevance of this new approach. Global Optimization: A Stochastic Approach is an elegant account of a refined theory, suitable for researchers and graduate students interested in global optimization and its applications.
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Stochastic global optimization is a very important subject, that has applications in virtually all areas of science and technology. Therefore there is nothing more opportune than writing a book about a successful and mature algorithm that turned out to be a good tool in solving difficult problems. Here we present some techniques for solving several problems by means of Fuzzy Adaptive Simulated Annealing (Fuzzy ASA), a fuzzy-controlled version of ASA, and by ASA itself. ASA is a sophisticated global optimization algorithm that is based upon ideas of the simulated annealing paradigm, coded in the C programming language and developed to statistically find the best global fit of a nonlinear constrained, non-convex cost function over a multi-dimensional space. By presenting detailed examples of its application we want to stimulate the reader’s intuition and make the use of Fuzzy ASA (or regular ASA) easier for everyone wishing to use these tools to solve problems. We kept formal mathematical requirements to a minimum and focused on continuous problems, although ASA is able to handle discrete optimization tasks as well. This book can be used by researchers and practitioners in engineering and industry, in courses on optimization for advanced undergraduate and graduate levels, and also for self-study.