Download Free A Geometry Of Music Book in PDF and EPUB Free Download. You can read online A Geometry Of Music and write the review.

In this groundbreaking book, Tymoczko uses contemporary geometry to provide a new framework for thinking about music, one that emphasizes the commonalities among styles from Medieval polyphony to contemporary jazz.
The original edition of The Geometry of Musical Rhythm was the first book to provide a systematic and accessible computational geometric analysis of the musical rhythms of the world. It explained how the study of the mathematical properties of musical rhythm generates common mathematical problems that arise in a variety of seemingly disparate fields. The book also introduced the distance approach to phylogenetic analysis and illustrated its application to the study of musical rhythm. The new edition retains all of this, while also adding 100 pages, 93 figures, 225 new references, and six new chapters covering topics such as meter and metric complexity, rhythmic grouping, expressive timbre and timing in rhythmic performance, and evolution phylogenetic analysis of ancient Greek paeonic rhythms. In addition, further context is provided to give the reader a fuller and richer insight into the historical connections between music and mathematics.
How is the Beatles' "Help!" similar to Stravinsky's "Dance of the Adolescents?" How does Radiohead's "Just" relate to the improvisations of Bill Evans? And how do Chopin's works exploit the non-Euclidean geometry of musical chords? In this groundbreaking work, author Dmitri Tymoczko describes a new framework for thinking about music that emphasizes the commonalities among styles from medieval polyphony to contemporary rock. Tymoczko identifies five basic musical features that jointly contribute to the sense of tonality, and shows how these features recur throughout the history of Western music. In the process he sheds new light on an age-old question: what makes music sound good? A Geometry of Music provides an accessible introduction to Tymoczko's revolutionary geometrical approach to music theory. The book shows how to construct simple diagrams representing relationships among familiar chords and scales, giving readers the tools to translate between the musical and visual realms and revealing surprising degrees of structure in otherwise hard-to-understand pieces. Tymoczko uses this theoretical foundation to retell the history of Western music from the eleventh century to the present day. Arguing that traditional histories focus too narrowly on the "common practice" period from 1680-1850, he proposes instead that Western music comprises an extended common practice stretching from the late middle ages to the present. He discusses a host of familiar pieces by a wide range of composers, from Bach to the Beatles, Mozart to Miles Davis, and many in between. A Geometry of Music is accessible to a range of readers, from undergraduate music majors to scientists and mathematicians with an interest in music. Defining its terms along the way, it presupposes no special mathematical background and only a basic familiarity with Western music theory. The book also contains exercises designed to reinforce and extend readers' understanding, along with a series of appendices that explore the technical details of this exciting new theory.
The Geometry of Musical Rhythm: What Makes a "Good" Rhythm Good? is the first book to provide a systematic and accessible computational geometric analysis of the musical rhythms of the world. It explains how the study of the mathematical properties of musical rhythm generates common mathematical problems that arise in a variety of seemingly dispara
Ashton presents a short, illustrated introduction to the evolution of simple harmonic theory. Illustrations.
Music theorists have long believed that 19th-century triadic progressions idiomatically extend the diatonic syntax of 18th-century classical tonality, and have accordingly unified the two repertories under a single mode of representation. Post-structuralist musicologists have challenged this belief, advancing the view that many romantic triadic progressions exceed the reach of classical syntax and are mobilized as the result of a transgressive, anti-syntactic impulse. In Audacious Euphony, author Richard Cohn takes both of these views to task, arguing that romantic harmony operates under syntactic principles distinct from those that underlie classical tonality, but no less susceptible to systematic definition. Charting this alternative triadic syntax, Cohn reconceives what consonant triads are, and how they relate to one another. In doing so, he shows that major and minor triads have two distinct natures: one based on their acoustic properties, and the other on their ability to voice-lead smoothly to each other in the chromatic universe. Whereas their acoustic nature underlies the diatonic tonality of the classical tradition, their voice-leading properties are optimized by the pan-triadic progressions characteristic of the 19th century. Audacious Euphony develops a set of inter-related maps that organize intuitions about triadic proximity as seen through the lens of voice-leading proximity, using various geometries related to the 19th-century Tonnetz. This model leads to cogent analyses both of particular compositions and of historical trends across the long nineteenth century. Essential reading for music theorists, Audacious Euphony is also a valuable resource for music historians, performers and composers.
Is there a secret visual language all around us? What's so special about the shape of the Great Pyramid? Why is there something so sixy about circles? How many ways can you tile the plane? Lavishly illustrated by the author, this enchanting small introduction to one of the oldest and most widely-used ancient traditions on Earth will forever change the way you look at a triangle, arch, window, fabric repeat, ceramic pattern, graphic design, painting, spiral or flower. WOODEN BOOKS are small but packed with information. "e;Fascinating"e; FINANCIAL TIMES. "e;Beautiful"e; LONDON REVIEW OF BOOKS. "e;Rich and Artful"e; THE LANCET. "e;Genuinely mind-expanding"e; FORTEAN TIMES. "e;Excellent"e; NEW SCIENTIST. "e;Stunning"e; NEW YORK TIMES. Small books, big ideas.
At first glance, mathematics and music seem to be from separate worlds—one from science, one from art. But in fact, the connections between the two go back thousands of years, such as Pythagoras’s ideas about how to quantify changes of pitch for musical tones (musical intervals). Mathematics and Music: Composition, Perception, and Performance explores the many links between mathematics and different genres of music, deepening students’ understanding of music through mathematics. In an accessible way, the text teaches the basics of reading music and explains how various patterns in music can be described with mathematics. The authors extensively use the powerful time-frequency method of spectrograms to analyze the sounds created in musical performance. Numerous examples of music notation assist students in understanding basic musical scores. The text also provides mathematical explanations for musical scales, harmony, and rhythm and includes a concise introduction to digital audio synthesis. Along with helping students master some fundamental mathematics, this book gives them a deeper appreciation of music by showing how music is informed by both its mathematical and aesthetic structures. Web Resource On the book’s CRC Press web page, students can access videos of many of the spectrograms discussed in the text as well as musical scores playable with the free music software MuseScore. An online bibliography offers many links to free downloadable articles on math and music. The web page also provides links to other websites related to math and music, including all the sites mentioned in the book.
A fascinating and inspirational look at the vital link between the hidden geometrical order of the universe, geometry in nature, and the geometry of the man-made world. The Da Vinci Code has awakened the public to the powerful and very ancient idea that religious truths and mathematical principles are intimately intertwined. Sacred Geometry offers an accessible way of understanding how that connection is revealed in nature and the arts. Over the centuries, temple builders have relied on magic numbers to shape sacred spaces, astronomers have used geometry to calculate holy seasons, and philosophers have observed the harmony of the universe in the numerical properties of music. By showing how the discoveries of mathematics are manifested over and over again in biology and physics, and how they have inspired the greatest works of art, this illuminating study reveals the universal principles that link us to the infinite.
The Quadrivium consists of the four Liberal Arts of Number, Geometry, Music, and Cosmology, studied from antiquity to the Renaissance as a way of glimpsing the nature of reality. They synthesize number, space, and time. Geometry is number in space, music is number in time, and the cosmos expresses number in space and time. Number, music, and geometry are metaphysical truths, good and beautiful everywhere at all times. Life across the universe investigates them. They foreshadow the physical sciences. This is the first volume to bring together the Quadrivium for many hundreds of years