Download Free A Genetic Programming Approach To Classification Problems Book in PDF and EPUB Free Download. You can read online A Genetic Programming Approach To Classification Problems and write the review.

Essay from the year 2013 in the subject Computer Science - Programming, grade: A+, University College Dublin, course: Natural Computing, language: English, abstract: Genetic Programming is a biological evolution inspired technique for computer programs to solve problems automatically by evolving iteratively using a fitness function. The advantage of this type programming is that it only defines the basics. As a result of this, it is a flexible solution for broad range of domains. Classification has been one of the most compelling problems in machine learning. In this paper, there is a comparison between genetic programming classifier and conventional classification algorithms like Naive Bayes, C4.5 decision tree, Random Forest, Support Vector Machines and k-Nearest Neighbour. The experiment is done on several data sets with different sizes, feature sets and attribute properties. There is also an experiment on the time complexity of each classifier method.
This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate and postgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.
Genetic programming, a form of genetic algorithm that evolves programs and program-like executable structures, is a new paradigm for developing reliable, time- and cost-effective applications. The second volume of Advances in Genetic Programming highlights many of the most recent technical advances in this increasingly popular field. The twenty-three contributions are divided into four parts: Variations on the Genetic Programming Theme; Hierarchical, Recursive, and Pruning Genetic Programs; Analysis and Implementation Issues; and New Environments for Genetic Programming.The first part extends the core concepts of genetic programming through the addition of new evolutionary techniques -- adaptive and self-adaptive crossover methods, hill climbing operators, and the inclusion of introns into the representation.Creating more concise executable structures is a long-term research topic in genetic programming. The second part describes the field's most recent efforts, including the dynamic manipulation of automatically defined functions, evolving logic programs that generate recursive structures, and using minimum description length heuristics to determine when and how to prune evolving structures.The third part takes up the many implementation and analysis issues associated with evolving programs. Advanced applications of genetic programming to nontrivial real-world problems are described in the final part: remote sensing of pressure ridges in Arctic sea ice formations from satellite imagery, economic prediction through model evolution, the evolutionary development of stress and loading models for novel materials, and data mining of a large customer database to optimize responses to special offers.
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.
Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.
Linear Genetic Programming presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. Typical GP phenomena, such as non-effective code, neutral variations, and code growth are investigated from the perspective of linear GP. This book serves as a reference for researchers; it includes sufficient introductory material for students and newcomers to the field.
This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Genetic programming (GP) is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until high-fitness solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. This unique overview of this exciting technique is written by three of the most active scientists in GP. See www.gp-field-guide.org.uk for more information on the book.
This book constitutes the refereed proceedings of the 12th Australian Joint Conference on Artificial Intelligence, AI'99, held in Sydney, Australia in December 1999. The 39 revised full papers presented together with 15 posters were carefully reviewed and selected from more than 120 submissions. The book is divided in topical sections on machine learning, neural nets, knowledge representation, natural language processing, belief revision, adaptive algorithms, automated reasonning, neural learning, heuristics, and applications
This book constitutes the refereed proceedings of the 24th European Conference on Genetic Programming, EuroGP 2021, held as part of Evo*2021, as Virtual Event, in April 2021, co-located with the Evo*2021 events, EvoCOP, EvoMUSART, and EvoApplications. The 11 revised full papers and 6 short papers presented in this book were carefully reviewed and selected from 27 submissions. The wide range of topics in this volume reflects the current state of research in the field. The collection of papers cover interesting topics including developing new operators for variants of GP algorithms, as well as exploring GP applications to the optimisation of machine learning methods and the evolution of complex combinational logic circuits.