Download Free A Generalized Process For The Verification And Validation Of Models And Simulation Results Book in PDF and EPUB Free Download. You can read online A Generalized Process For The Verification And Validation Of Models And Simulation Results and write the review.

This work began when I was appointed as a Technical Director for Modeling and Simulation (M&S) Verification and Validation (V&V) for a major defense system in 2008. It is intended to provide the nuts and bolts of performing M&S V&V in one volume. It is not intended to provide a holistic approach to M&S V&V, as that can be derived from other sources. As such, this book assumes a basic understanding of V&V, including its place in the lifecycle, its purpose and its scope for ensuring the quality of models and simulations. During the process of developing this text, the Simulation Interoperability Standards Organization (SISO) completed SISO-GUIDE-001.2-2013, Guide for Generic Methodology for Verification and Validation (GM-VV) to Support Acceptance of Models, Simulations, and Data, 2 Volumes, June 2013. The guide does serve the purpose not covered by this book. This text provides procedural details for performing V&V. The procedures are static, dynamic and informal.
This must-read text/reference provides a practical guide to processes involved in the development and application of dynamic simulation models, covering a wide range of issues relating to testing, verification and validation. Illustrative example problems in continuous system simulation are presented throughout the book, supported by extended case studies from a number of interdisciplinary applications. Topics and features: provides an emphasis on practical issues of model quality and validation, along with questions concerning the management of simulation models, the use of model libraries, and generic models; contains numerous step-by-step examples; presents detailed case studies, often with accompanying datasets; includes discussion of hybrid models, which involve a combination of continuous system and discrete-event descriptions; examines experimental modeling approaches that involve system identification and parameter estimation; offers supplementary material at an associated website.
"This book provides a comprehensive overview of theory and practice in simulation systems focusing on major breakthroughs within the technological arena, with particular concentration on the accelerating principles, concepts and applications"--Provided by publisher.
Systems engineering is the design of a complex interconnection of many elements (a system) to maximize a specific measure of system performance. It consists of two parts: modeling, in which each element of the system and its performance criteria are described; and optimization in which adjustable elements are tailored to allow peak performance. Systems engineering is applied to vast numbers of problems in industry and the military. An example of systems engineering at work is the control of the timing of thousands of city traffic lights to maximize traffic flow. The complex and intricate field of electronics and computers is perfectly suited for systems engineering analysis and in turn, advances in communications and computer technology have made more advanced systems engineering problems solvable. Thus, the two areas fed off of one another. This book is a basic introduction to the use of models and methods in the engineering design of systems. It is aimed at students as well as practicing engineers. The concept of the "systems of systems" is discussed extensively, after a critical comparison of the different definitions and a range of various practical illustrations. It also provides key answers as to what a system of systems is and how its complexity can be mastered.
A modern guide to computational models and constructive simulation for personalized patient care using the Digital Patient The healthcare industry’s emphasis is shifting from merely reacting to disease to preventing disease and promoting wellness. Addressing one of the more hopeful Big Data undertakings, The Digital Patient: Advancing Healthcare, Research, and Education presents a timely resource on the construction and deployment of the Digital Patient and its effects on healthcare, research, and education. The Digital Patient will not be constructed based solely on new information from all the “omics” fields; it also includes systems analysis, Big Data, and the various efforts to model the human physiome and represent it virtually. The Digital Patient will be realized through the purposeful collaboration of patients as well as scientific, clinical, and policy researchers. The Digital Patient: Advancing Healthcare, Research, and Education addresses the international research efforts that are leading to the development of the Digital Patient, the wealth of ongoing research in systems biology and multiscale simulation, and the imminent applications within the domain of personalized healthcare. Chapter coverage includes: The visible human The physiological human The virtual human Research in systems biology Multi-scale modeling Personalized medicine Self-quantification Visualization Computational modeling Interdisciplinary collaboration The Digital Patient: Advancing Healthcare, Research, and Education is a useful reference for simulation professionals such as clinicians, medical directors, managers, simulation technologists, faculty members, and educators involved in research and development in the life sciences, physical sciences, and engineering. The book is also an ideal supplement for graduate-level courses related to human modeling, simulation, and visualization.
For every weapons system being developed, the U.S. Department of Defense (DOD) must make a critical decision: Should the system go forward to full-scale production? The answer to that question may involve not only tens of billions of dollars but also the nation's security and military capabilities. In the milestone process used by DOD to answer the basic acquisition question, one component near the end of the process is operational testing, to determine if a system meets the requirements for effectiveness and suitability in realistic battlefield settings. Problems discovered at this stage can cause significant production delays and can necessitate costly system redesign. This book examines the milestone process, as well as the DOD's entire approach to testing and evaluating defense systems. It brings to the topic of defense acquisition the application of scientific statistical principles and practices.
Explores wide-ranging applications of modeling and simulation techniques that allow readers to conduct research and ask "What if?" Principles of Modeling and Simulation: A Multidisciplinary Approach is the first book to provide an introduction to modeling and simulation techniques across diverse areas of study. Numerous researchers from the fields of social science, engineering, computer science, and business have collaborated on this work to explore the multifaceted uses of computational modeling while illustrating their applications in common spreadsheets. The book is organized into three succinct parts: Principles of Modeling and Simulation provides a brief history of modeling and simulation, outlines its many functions, and explores the advantages and disadvantages of using models in problem solving. Two major reasons to employ modeling and simulation are illustrated through the study of a specific problem in conjunction with the use of related applications, thus gaining insight into complex concepts. Theoretical Underpinnings examines various modeling techniques and introduces readers to two significant simulation concepts: discrete event simulation and simulation of continuous systems. This section details the two primary methods in which humans interface with simulations, and it also distinguishes the meaning, importance, and significance of verification and validation. Practical Domains delves into specific topics related to transportation, business, medicine, social science, and enterprise decision support. The challenges of modeling and simulation are discussed, along with advanced applied principles of modeling and simulation such as representation techniques, integration into the application infrastructure, and emerging technologies. With its accessible style and wealth of real-world examples, Principles of Modeling and Simulation: A Multidisciplinary Approach is a valuable book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for researchers and practitioners working in statistics, mathematics, engineering, computer science, economics, and the social sciences who would like to further develop their understanding and knowledge of the field.
Explore the military and combat applications of modeling and simulation Engineering Principles of Combat Modeling and Distributed Simulation is the first book of its kind to address the three perspectives that simulation engineers must master for successful military and defense related modeling: the operational view (what needs to be modeled); the conceptual view (how to do combat modeling); and the technical view (how to conduct distributed simulation). Through methods from the fields of operations research, computer science, and engineering, readers are guided through the history, current training practices, and modern methodology related to combat modeling and distributed simulation systems. Comprised of contributions from leading international researchers and practitioners, this book provides a comprehensive overview of the engineering principles and state-of-the-art methods needed to address the many facets of combat modeling and distributed simulation and features the following four sections: Foundations introduces relevant topics and recommended practices, providing the needed basis for understanding the challenges associated with combat modeling and distributed simulation. Combat Modeling focuses on the challenges in human, social, cultural, and behavioral modeling such as the core processes of "move, shoot, look, and communicate" within a synthetic environment and also equips readers with the knowledge to fully understand the related concepts and limitations. Distributed Simulation introduces the main challenges of advanced distributed simulation, outlines the basics of validation and verification, and exhibits how these systems can support the operational environment of the warfighter. Advanced Topics highlights new and developing special topic areas, including mathematical applications fo combat modeling; combat modeling with high-level architecture and base object models; and virtual and interactive digital worlds. Featuring practical examples and applications relevant to industrial and government audiences, Engineering Principles of Combat Modeling and Distributed Simulation is an excellent resource for researchers and practitioners in the fields of operations research, military modeling, simulation, and computer science. Extensively classroom tested, the book is also ideal for courses on modeling and simulation; systems engineering; and combat modeling at the graduate level.
This book contains a selection of papers presented at a symposium organized under the aegis of COST Telecommunications Action 285. COST (European Cooperation in the field of Scientific and Technical Research) is a framework for scientific and technical cooperation, allowing the coordination of national research on a European level. Action 285 sought to enhance existing tools and develop new modeling and simulation tools.