Download Free A Gateway To Higher Mathematics Book in PDF and EPUB Free Download. You can read online A Gateway To Higher Mathematics and write the review.

A Gateway to Higher Mathematics integrates the process of teaching students how to do proofs into the framework of displaying the development of the real number system. The text eases the students into learning how to construct proofs, while preparing students how to cope with the type of proofs encountered in the higher-level courses of abstract algebra, analysis, and number theory. After using this text, the students will not only know how to read and construct proofs, they will understand much about the basic building blocks of mathematics. The text is designed so that the professor can choose the topics to be emphasized, while leaving the remainder as a reference for the students.
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.
The Definitive Guide to Learning Higher Mathematics is a comprehensive, illustrated guide to help you optimize higher mathematical learning, thinking and problem solving through 10 foundational principles and countless actionable tips. In 10 chapters and 86 pages, it’ll take you around the different aspects of higher mathematical learning, leaving no stone unturned from material selection, big picture thinking, proximal zone, cognitive techniques to proactive learning, head-processing, scientific method and social learning. Hightlights - Extensive actionable tips to illustrate each principle involved - Extensive annotations, pro-tips, quotes and illustrations for better insight - Carefully prepared after-chapter summaries for better understanding - Printable PDF format (8.5 in. x 11 in.) with linkable table of contents and index for handy reference and reviewing Table of Contents 0. Preface 1. Choose Your Materials Judiciously 2. Always Keep the Big Picture in Mind 3. Operate within the Proximal Zone 4. Isolate Until Mastered Before Moving On 5. Be a Proactive, Independent Thinker and Learner 6. Do Most Things Inside Your Head 7. Practice the Scientific Method in a Creative Way 8. Don’t Fret Too Much About Real-life Applicability 9. Scale Up Learning by Going Social 10. Embrace the Mathematical Experience 11. Last Few Words 12. Index
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
Accompanying CD-ROM contains ... "a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins."--CD-ROM label.
Mathematics Classrooms That Promote Understanding synthesizes the implications of research done by the National Center for Research in Mathematical Sciences on integrating two somewhat diverse bodies of scholarly inquiry: the study of teaching and the study of learning mathematics. This research was organized around content domains and/or continuing issues of education, such as equity and assessment of learning, and was guided by two common goals--defining the mathematics content of the K-12 curriculum in light of the changing mathematical needs of citizens for the 21st century, and identifying common components of classrooms that enable students to learn the redefined mathematics with understanding. To accomplish these goals, classrooms in which instruction facilitated the growth of understanding were established and/or studied. This volume reports and discusses the findings which grew out of this research, and subsequent papers and discussions among the scholars engaged in the endeavor. Section I, "Setting the Stage," focuses on three major threads: What mathematics should be taught; how we should define and increase students' understanding of that mathematics; and how learning with understanding can be facilitated for all students. Section II, "Classrooms That Promote Understanding," includes vignettes from diverse classrooms that illustrate classroom discourse, student work, and student engagement in the mathematics described in Chapter 1 as well as the mental activities described in Chapter 2. These chapters also illustrate how teachers deal with the equity concerns described in Chapter 3. Section III addresses "Developing Classrooms That Promote Understanding." The knowledge of the teaching/learning process gained from the research reported in this volume is a necessary prerequisite for implementing the revisions called for in the current reform movement. The classrooms described show that innovative reform in teaching and learning mathematics is possible. Unlike many volumes reporting research, this book is written at a level appropriate for master's degree students. Very few references are included in the chapters themselves; instead, each chapter includes a short annotated list of articles for expanded reading which provides the scholarly basis and research substantiation for this volume.
This book offers multiple interconnected perspectives on the largely untapped potential of elementary number theory for mathematics education: its formal and cognitive nature, its relation to arithmetic and algebra, its accessibility, its utility and intrinsic merits, to name just a few. Its purpose is to promote explication and critical dialogue about these issues within the international mathematics education community. The studies comprise a variety of pedagogical and research orientations by an international group of researchers that, collectively, make a compelling case for the relevance and importance of number theory in mathematics education in both pre K-16 settings and mathematics teacher education. Topics variously engaged include: *understanding particular concepts related to numerical structure and number theory; *elaborating on the historical and psychological relevance of number theory in concept development; *attaining a smooth transition and extension from pattern recognition to formative principles; *appreciating the aesthetics of number structure; *exploring its suitability in terms of making connections leading to aha! insights and reaching toward the learner's affective domain; *reexamining previously constructed knowledge from a novel angle; *investigating connections between technique and theory; *utilizing computers and calculators as pedagogical tools; and *generally illuminating the role number theory concepts could play in developing mathematical knowledge and reasoning in students and teachers. Overall, the chapters of this book highlight number theory-related topics as a stepping-stone from arithmetic toward generalization and algebraic formalism, and as a means for providing intuitively grounded meanings of numbers, variables, functions, and proofs. Number Theory in Mathematics Education: Perspectives and Prospects is of interest to researchers, teacher educators, and students in the field of mathematics education, and is well suited as a text for upper-level mathematics education courses.
Exploring Mathematics: Investigations with Functions is intended for a one- or two-term course in mathematics for college students majoring in the social sciences, English, history, music, art, education, or any of the other majors within liberal arts. The mathematics course of this scope, with an algebra prerequsite, is a popular selection for liberal arts students. This 9-chapter textbook offers modern applications of mathematics in the liberal arts as well as aesthetic features of this rich facet of history and ongoing advancement of human society. With a central theme around the use of the concept of functions, and the inclusion of unique topics and chapters, Exploring Mathematics enables students to explore the next level of mathematics. It attempts to answer the questions, "How does mathematics help us to better our society and understand the world around us?" and "What are some of the unifying ideas of mathematics?" The central theme helps to impress upon the student the feeling that mathematics is more than a disconnected potpourri of rules and tricks. Although it would be inappropriate to force a functional connection in every single section, the theme is used whenever possible to provide conceptual bridges between chapters. Developing the concept of a function augments the presentation of many topics in every chapter. The Text's Objectives: The author chose the topics based on meeting the specific NCTM curriculum standards to: 1. Strengthen estimation and computational skills. 2. Utilize algebraic concepts. 3. Emphasize problem-solving and reasoning. 4. Emphasize pattern and relationship recognition. 5. Highlight importance of units in measurement. 6. Highlight importance of the notion of a mathematical function. 7. Display mathematical connections to other disciplines.