Download Free A Formal Methodology For The Verification Of Concurrent Systems Book in PDF and EPUB Free Download. You can read online A Formal Methodology For The Verification Of Concurrent Systems and write the review.

With the rapid growth of networking and high-computing power, the demand for large-scale and complex software systems has increased dramatically. Many of the software systems support or supplant human control of safety-critical systems such as flight control systems, space shuttle control systems, aircraft avionics control systems, robotics, patient monitoring systems, nuclear power plant control systems, and so on. Failure of safety-critical systems could result in great disasters and loss of human life. Therefore, software used for safety critical systems should preserve high assurance properties. In order to comply with high assurance properties, a safety-critical system often shares resources between multiple concurrently active computing agents and must meet rigid real-time constraints. However, concurrency and timing constraints make the development of a safety-critical system much more error prone and arduous. The correctness of software systems nowadays depends mainly on the work of testing and debugging. Testing and debugging involve the process of de tecting, locating, analyzing, isolating, and correcting suspected faults using the runtime information of a system. However, testing and debugging are not sufficient to prove the correctness of a safety-critical system. In contrast, static analysis is supported by formalisms to specify the system precisely. Formal verification methods are then applied to prove the logical correctness of the system with respect to the specification. Formal verifica tion gives us greater confidence that safety-critical systems meet the desired assurance properties in order to avoid disastrous consequences.
This book constitutes the proceedings of the 14th International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2009 held in Eindhoven, The Netherlands, in November 2009. The 10 papers presented were carefully reviewed and selected from 25 submissions. The volume also contains with 4 invited papers and 6 posters. The aim of the FMICS workshop series is to provide a forum for researchers who are interested in the development and application of formal methods in industry. It also strives to promote research and development for the improvement of formal methods and tools for industrial applications.
This book constitutes the refereed workshop proceedings of the 10th International Workshop on Structured Object-Oriented Formal Language and Method, SOFL+MSVL 2020, held in Singapore, in March 2021. The 13 revised full papers included in the volume were carefully reviewed and selected from 24 submissions. They are organized in the following topical sections: modeling and specification; model checking; specification and verification; and testing and formal verification.Due to the Corona pandemic this event was held virtually.
This book describes an accurate analysis technique for energy systems based on formal methods—computer-based mathematical logic techniques for the specification, validation, and verification of the systems. Correctness and accuracy of the financial, operational, and implementation analysis are of the paramount importance for the materialization of the future energy systems, such as smart grids, to achieve the objectives of cost-effectiveness, efficiency, and quality-of-service. In this regard, the book develops formal theories of microeconomics, asymptotic, and stability to support the formal analysis of generation and distribution cost, smart operations, and processing of energy in a smart grid. These formal theories are also employed to formally verify the cost and utility modeling for: Energy generation and distribution; Asymptotic bounds for online scheduling algorithms for plug-in electric vehicles; and Stability of the power converters for wind turbines. The proposed approach results in mechanized proofs for the specification, validation, and verification of corresponding smart grid problems. The formal mathematical theories developed can be applied to the formal analysis of several other hardware and software systems as well, making this book of interest to researchers and practicing engineers in a variety of power electronic fields.
The IFIP TC-10 Working Conference on Distributed and Parallel Embedded Systems (DIPES 2004) brings together experts from industry and academia to discuss recent developments in this important and growing field in the splendid city of Toulouse, France. The ever decreasing price/performance ratio of microcontrollers makes it economically attractive to replace more and more conventional mechanical or electronic control systems within many products by embedded real-time computer systems. An embedded real-time computer system is always part of a well-specified larger system, which we call an intelligent product. Although most intelligent products start out as stand-alone units, many of them are required to interact with other systems at a later stage. At present, many industries are in the middle of this transition from stand-alone products to networked embedded systems. This transition requires reflection and architecting: The complexity of the evolving distributed artifact can only be controlled, if careful planning and principled design methods replace the - hoc engineering of the first version of many standalone embedded products.
Computer scientists have long appreciated that the relationship between algorithms and architecture is crucial. Broadly speaking the more specialized the architecture is to a particular algorithm then the more efficient will be the computation. The penalty is that the architecture will become useless for computing anything other than that algorithm. This message holds for the algorithms used in real-time automatic control as much as any other field. These Proceedings will provide researchers in this field with a useful up-to-date reference source of recent developments.
Formal methods are coming of age. Mathematical techniques and tools are now regarded as an important part of the development process in a wide range of industrial and governmental organisations. A transfer of technology into the mainstream of systems development is slowly, but surely, taking place. FM’99, the First World Congress on Formal Methods in the Development of Computing Systems, is a result, and a measure, of this new-found maturity. It brings an impressive array of industrial and applications-oriented papers that show how formal methods have been used to tackle real problems. These proceedings are a record of the technical symposium ofFM’99:alo- side the papers describingapplicationsofformalmethods,youwill ndtechnical reports,papers,andabstracts detailing new advances in formaltechniques,from mathematical foundations to practical tools. The World Congress is the successor to the four Formal Methods Europe Symposia, which in turn succeeded the four VDM Europe Symposia. This s- cession re?ects an increasing openness within the international community of researchers and practitioners: papers were submitted covering a wide variety of formal methods and application areas. The programmecommittee re?ects the Congress’s international nature, with a membership of 84 leading researchersfrom 38 di erent countries.The comm- tee was divided into 19 tracks, each with its own chair to oversee the reviewing process. Our collective task was a di cult one: there were 259 high-quality s- missions from 35 di erent countries.
This state-of-the-art monograph presents a coherent survey of a variety of methods and systems for formal hardware verification. It emphasizes the presentation of approaches that have matured into tools and systems usable for the actual verification of nontrivial circuits. All in all, the book is a representative and well-structured survey on the success and future potential of formal methods in proving the correctness of circuits. The various chapters describe the respective approaches supplying theoretical foundations as well as taking into account the application viewpoint. By applying all methods and systems presented to the same set of IFIP WG10.5 hardware verification examples, a valuable and fair analysis of the strenghts and weaknesses of the various approaches is given.
This book constitutes the Proceedings of the IFIP Working Conference PRO COMET'98, held 8-12 June 1998 at Shelter Island, N.Y. The conference is organized by the t'wo IFIP TC 2 Working Groups 2.2 Formal Description of Programming Concepts and 2.3 Programming Methodology. WG2.2 and WG2.3 have been organizing these conferences every four years for over twenty years. The aim of such Working Conferences organized by IFIP Working Groups is to bring together leading scientists in a given area of computer science. Participation is by invitation only. As a result, these conferences distinguish themselves from other meetings by extensive and competent technical discus sions. PROCOMET stands for Programming Concepts and Methods, indicating that the area of discussion for the conference is the formal description of pro gramming concepts and methods, their tool support, and their applications. At PROCOMET working conferences, papers are presented from this whole area, reflecting the interest of the individuals in WG2.2 and WG2.3.