Download Free A Formal Approach To Automating Conceptual Structural Design Book in PDF and EPUB Free Download. You can read online A Formal Approach To Automating Conceptual Structural Design and write the review.

Contrary to popular mythology, the designs of favorable products and successful systems do not appear suddenly, or magically. This second edition of Engineering Design demonstrates that symbolic representation and related problem-solving methods, offer significant opportunities to clarify and articulate concepts of design to lay a better framework for design research and design education. Artificial Intelligence (AI) provides a substantial body of material concerned with understanding and modeling cognitive processes. This book adopts the vocabulary and a paradigm of AI to enhance the presentation and explanation of design. It includes concepts from AI because of their explanatory power and their utility as possible ingredients of practical design activity. This second edition has been enriched by the inclusion of recent work on design reasoning, computational design, AI in design, and design cognition, with pointers to a wide cross section of the current literature.
Computer technology has revolutionized many aspects of building design, such as drafting, management, construction - even building with robots. This revolution has expanded into the field of design creativity. Presented in this book is an up-to-date, comprehensive picture of research advances in the fast-growing field of informatics applied to conceptual stages in the generation of artifacts - in particular, buildings. It addresses the question how far and in what ways creative design can be intelligently automated. Among the topics covered are: the use of precedents; the relations between case-based, rule-based, and principle-based architectural design reasoning; product typology; artifact thesauruses; the inputting and retrieval of architectural knowledge; the visual representation and understanding of existing or projected built forms; empirical and analytical models of the design process and the design product; desktop design toolkits; grammars of shape and of function; multiple-perspective building data structures; design as a multi-agent collaborative process; the integration of heterogeneous engineering information; and foundations for a systematic approach to the development of knowledge-based design systems. The papers provide a link between basic and practical issues: - fundamental questions in the theory of artifact design, artifical intelligence, and the cognitive science of imagination and reasoning; - problems in the computerization of building data and design facilities; - the practical tasks of building conception, construction and evaluation. The automation of creative design is itself considered as an engineering design problem. The implications of current and future work for architectural education and research in architectural history, as well as for computer-integrated construction and the management of engineering projects are considered.
This book presents the state of the art of artificial intelligence techniques applied to structural engineering. The 28 revised full papers by leading scientists were solicited for presentation at a meeting held in Ascona, Switzerland, in July 1998. The recent advances in information technology, in particular decreasing hardware cost, Internet communication, faster computation, increased bandwidth, etc., allow for the application of new AI techniques to structural engineering. The papers presented deal with new aspects of information technology support for the design, analysis, monitoring, control and diagnosis of various structural engineering systems.
This book provides a comprehensive presentation of artificial intelligence (AI) methodologies and tools valuable for solving a wide spectrum of engineering problems. What's more, it offers these AI tools on an accompanying disk with easy-to-use software. Artificial Intelligence and Expert Systems for Engineers details the AI-based methodologies known as: Knowledge-Based Expert Systems (KBES); Design Synthesis; Design Critiquing; and Case-Based Reasoning. KBES are the most popular AI-based tools and have been successfully applied to planning, diagnosis, classification, monitoring, and design problems. Case studies are provided with problems in engineering design for better understanding of the problem-solving models using the four methodologies in an integrated software environment. Throughout the book, examples are given so that students and engineers can acquire skills in the use of AI-based methodologies for application to practical problems ranging from diagnosis to planning, design, and construction and manufacturing in various disciplines of engineering. Artificial Intelligence and Expert Systems for Engineers is a must-have reference for students, teachers, research scholars, and professionals working in the area of civil engineering design in particular and engineering design in general.
This work shows how Information and Communications Technology (ICT) can contribute to children's learning, how it can be integrated into a play based curriculum and how it relates to key areas of learning such as collaboration, communication, exploration and socio-dramatic play. It outlines the ICT requirements in the UK Foundation Stage Curriculum Guidance, and it examines the international relevance and implications of ICT for young children. The text provides a critical account of the digital divide, suggesting practical strategies for all the individuals and institutions working towards social justice. It offers guidance for the development of centre based practice and on curriculum integration and the selection of developmentally appropriate educational software. It also explores ergonomic issues, as revealed by research. How should children sit at a computer? For how long? What are the risks? Emphasis is placed on the processes of policy development and the realization of change and guidance is given on how to use development plans and evaluation tools.
This book contains the papers presented at the International Symposium, "The Optimum Shape: Automated Structural Design," held at the General Motors Research Laboratories on September 3D-October 1, 1985. This was the 30th symposium in a series which the Research Laboratories began sponsoring in 1957. Each symposium has focused on a topic that is both under active study at the Research Laboratories and is also of interest to the larger technical community. While attempts to produce a structure which performs a certain task with the minimum amount of resources probably predates recorded civilization, the idea of coupling formal optimization techniques with computer-based structural analysis techniques was first proposed in the early 1960s. Although it was recognized at this time that the most fundamental description of the problem would be in terms of the shape or contours of the structure, much of the early work described the problem in terms of structural sizing parameters instead of geometrical descriptions. Within the past few years, several research groups have started to explore this more fundamental area of shape design. Initial research has raised many new questions about appropriate selection of design variables, methods of calculating derivatives, and generation of the underlying analysis problem.
This volume contains selected papers presented at the 12th International C- ference on Conceptual Structures, ICCS 2004, held in Huntsville Alabama, July 19–23, 2004. The main theme of the conference, “Conceptual Structures at Work”, was chosen to express our intention of applying conceptual structures for hum- centered practical purposes. That invites us to develop not only clear conceptual theories,butalsomethodstosupporthumansintheapplicationofthesetheories in their societies. Some promising steps in this direction are being taken, but the gap between the researchers working on a highly sophisticated level on one side and the practitioners in many ?elds of applications on the other side is usually di?culttobridge.Someofushaveexperiencesinsuchpracticalcooperation,but we need more members of our community to be engaged in “real life problems”. We all know that solutions of complex problems in practice require not only a well-developed formal theory, but also an understanding of the whole context of the given problems. To support our understanding we need general philo- phical methods as well as formal theories for the representation of fundamental structures in practice. We believe that our community has powerful tools and methodsforsuccessfulapplicationsinpractice,butthatwemustdevelopaforum to present our results to a broader audience. First we must understand the s- ni?cant developments in our own group, which has activities in many directions of research.